Regularization, Optimization, Kernels, and Support Vector Machines (Chapman & Hall/Crc Machine Learning & Pattern Recognition Series)
暫譯: 正則化、優化、核函數與支持向量機(Chapman & Hall/Crc 機器學習與模式識別系列)

  • 出版商: Chapman and Hall/CRC
  • 出版日期: 2014-10-30
  • 售價: $3,600
  • 貴賓價: 9.5$3,420
  • 語言: 英文
  • 頁數: 525
  • 裝訂: Hardcover
  • ISBN: 1482241390
  • ISBN-13: 9781482241396
  • 相關分類: Machine Learning
  • 立即出貨 (庫存 < 3)

相關主題

商品描述

Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference:

  • Covers the relationship between support vector machines (SVMs) and the Lasso
  • Discusses multi-layer SVMs
  • Explores nonparametric feature selection, basis pursuit methods, and robust compressive sensing
  • Describes graph-based regularization methods for single- and multi-task learning
  • Considers regularized methods for dictionary learning and portfolio selection
  • Addresses non-negative matrix factorization
  • Examines low-rank matrix and tensor-based models
  • Presents advanced kernel methods for batch and online machine learning, system identification, domain adaptation, and image processing
  • Tackles large-scale algorithms including conditional gradient methods, (non-convex) proximal techniques, and stochastic gradient descent

Regularization, Optimization, Kernels, and Support Vector Machines is ideal for researchers in machine learning, pattern recognition, data mining, signal processing, statistical learning, and related areas.

商品描述(中文翻譯)

《正則化、優化、核方法與支持向量機》提供了大型機器學習的最新技術狀態快照,成為正則化、稀疏性、壓縮感知、凸優化及大規模優化、核方法和支持向量機等最新研究和進展的單一多學科來源。該書由機器學習領域的領先研究者撰寫,共包含21章,這本全面的參考書:

- 涵蓋支持向量機(SVM)與Lasso之間的關係
- 討論多層SVM
- 探索非參數特徵選擇、基追求方法和穩健的壓縮感知
- 描述基於圖的正則化方法,用於單任務和多任務學習
- 考慮字典學習和投資組合選擇的正則化方法
- 處理非負矩陣分解
- 檢視低秩矩陣和張量基模型
- 提出用於批量和在線機器學習、系統識別、領域適應和圖像處理的先進核方法
- 解決包括條件梯度方法、(非凸)近端技術和隨機梯度下降在內的大規模算法

《正則化、優化、核方法與支持向量機》非常適合機器學習、模式識別、數據挖掘、信號處理、統計學習及相關領域的研究人員。