Financial Signal Processing and Machine Learning
暫譯: 金融信號處理與機器學習

Ali N. Akansu (Editor), Sanjeev R. Kulkarni (Editor), Dmitry M. Malioutov (Editor)

  • 出版商: IEEE
  • 出版日期: 2016-05-31
  • 定價: $3,940
  • 售價: 9.5$3,743
  • 語言: 英文
  • 頁數: 312
  • 裝訂: Hardcover
  • ISBN: 1118745671
  • ISBN-13: 9781118745670
  • 相關分類: Machine Learning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches.

Key features:

• Highlights signal processing and machine learning as key approaches to quantitative finance.

• Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems.

• Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques.

• Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.

商品描述(中文翻譯)

現代金融業必須處理各種資產類別的大型且多樣化的投資組合,通常可用的市場數據有限。《金融信號處理與機器學習》統合了在信號處理和機器學習領域的多項最新進展,旨在設計和管理投資組合及金融工程。本書彌補了這些學科之間的差距,提供有關關鍵主題的最新資訊,包括在高維度中表徵統計依賴性和相關性、構建有效且穩健的風險度量,以及它們在投資組合優化和再平衡中的應用。本書專注於信號處理方法來建模回報、動量和均值回歸,並探討理論和實施方面。它強調了投資組合理論、稀疏學習與壓縮感知、稀疏特徵投資組合、穩健優化、非高斯數據驅動的風險度量、圖形模型、通過時間因果建模的因果分析,以及基於大規模聯合分佈的方法之間的聯繫。

主要特點:

• 突出信號處理和機器學習作為量化金融的關鍵方法。

• 提供高維投資組合構建、監控和交易後分析問題的先進數學工具。

• 介紹投資組合理論、稀疏學習與壓縮感知、投資組合的稀疏性方法,包括特徵投資組合、模型回報、動量、均值回歸和非高斯數據驅動的風險度量,並展示這些技術的實際應用。

• 包含來自信號與信息處理社群及量化金融社群的領先研究人員和實務者的貢獻。