Enhancing Deep Learning with Bayesian Inference: Create more powerful, robust deep learning systems with Bayesian deep learning in Python (Paperback)
暫譯: 利用貝葉斯推斷增強深度學習:在Python中創建更強大、穩健的深度學習系統
Benatan, Matt, Gietema, Jochem, Schneider, Marian
- 出版商: Packt Publishing
- 出版日期: 2023-06-30
- 售價: $2,090
- 貴賓價: 9.5 折 $1,986
- 語言: 英文
- 頁數: 386
- 裝訂: Quality Paper - also called trade paper
- ISBN: 180324688X
- ISBN-13: 9781803246888
-
相關分類:
DeepLearning
-
相關翻譯:
Python 貝葉斯深度學習 (簡中版)
買這商品的人也買了...
-
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback) -
離散數學 最新修訂版$800$632 -
Probabilistic Graphical Models: Principles and Techniques (Hardcover)$5,160$4,902 -
Python 設計模式深入解析 (Mastering Python Design Patterns)$360$281 -
不再聽不懂!圖解網站建置與開發$450$356 -
演算法之美:隱藏在資料結構背後的原理 (C++版)$650$507 -
為你自己學 Git$500$425 -
Python 技術者們 - 實踐! 帶你一步一腳印由初學到精通$650$553 -
Python 與 LINE Bot 機器人全面實戰特訓班 (附203分鐘影音教學/範例程式)$520$411 -
Python 技術者們 - 練功!老手帶路教你精通正宗 Python 程式 (The Quick Python Book, 3/e)$780$663 -
設計師都該懂的包容性網頁 UI/UX 設計模式:知名設計師教你親和性網頁的實作祕密$450$351 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 2/e (How Linux Works: What Every Superuser Should Know, 2/e)$600$468 -
JavaScript 技術手冊$560$476 -
PowerShell 流程自動化攻略 (Powershell for Sysadmins: A Hands-On Guide to Automating Your Workflow)$500$425 -
Think Bayes: Bayesian Statistics in Python 2nd$1,881$1,782 -
精通資料視覺化 : 用試算表與程式說故事 (Hands-On Data Visualization: Interactive Storytelling from Spreadsheets to Code)$680$537 -
打下最紮實 AI 基礎不依賴套件:手刻機器學習神經網路穩健前進$1,200$948 -
Probabilistic Machine Learning: An Introduction (Hardcover)$2,650$2,597 -
強健的 Python|撰寫潔淨且可維護的程式碼 (Robust Python: Write Clean and Maintainable Code)$680$537 -
Template Metaprogramming with C++: Learn everything about C++ templates and unlock the power of template metaprogramming (Paperback)$1,830$1,739 -
Python 資料結構×演算法 刷題鍛鍊班:234 題帶你突破 Coding 面試的難關$650$513 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 3/e (How Linux Works : What Every Superuser Should Know, 3/e)$780$608 -
精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life)$600$468 -
Probabilistic Machine Learning: Advanced Topics (Hardcover)$4,500$4,410 -
Graph Machine Learning - Second Edition: Learn about the latest advancements in graph data to build robust machine learning models$1,930$1,834
相關主題
商品描述
Deep learning has an increasingly significant impact on our lives, from suggesting content to playing a key role in mission- and safety-critical applications. As the influence of these algorithms grows, so does the concern for the safety and robustness of the systems which rely on them. Simply put, typical deep learning methods do not know when they don’t know. The field of Bayesian Deep Learning contains a range of methods for approximate Bayesian inference with deep networks. These methods help to improve the robustness of deep learning systems as they tell us how confident they are in their predictions, allowing us to take more care in how we incorporate model predictions within our applications. Through this book, you will be introduced to the rapidly growing field of uncertainty-aware deep learning, developing an understanding of the importance of uncertainty estimation in robust machine learning systems. You will learn about a variety of popular Bayesian Deep Learning methods, and how to implement these through practical Python examples covering a range of application scenarios. By the end of the book, you will have a good understanding of Bayesian Deep Learning and its advantages, and you will be able to develop Bayesian Deep Learning models for safer, more robust deep learning systems.
商品描述(中文翻譯)
深度學習對我們的生活產生了越來越重要的影響,從內容建議到在任務和安全關鍵應用中扮演關鍵角色。隨著這些演算法的影響力增長,對依賴它們的系統的安全性和穩健性的擔憂也隨之增加。簡而言之,典型的深度學習方法並不知道自己何時不知道。貝葉斯深度學習(Bayesian Deep Learning)領域包含了一系列用於深度網絡的近似貝葉斯推斷方法。這些方法有助於提高深度學習系統的穩健性,因為它們告訴我們對其預測的信心程度,使我們在將模型預測納入應用時能夠更加謹慎。通過本書,您將被介紹到快速增長的不確定性感知深度學習領域,並理解不確定性估計在穩健機器學習系統中的重要性。您將學習多種流行的貝葉斯深度學習方法,以及如何通過實用的 Python 範例來實現這些方法,涵蓋各種應用場景。到本書結束時,您將對貝葉斯深度學習及其優勢有良好的理解,並能夠開發貝葉斯深度學習模型,以實現更安全、更穩健的深度學習系統。