Practical Guide to Applied Conformal Prediction in Python: Learn and apply the best uncertainty frameworks to your industry applications
暫譯: Python 應用型一致性預測實用指南:學習並應用最佳不確定性框架於您的行業應用

Manokhin, Valery

  • 出版商: Packt Publishing
  • 出版日期: 2023-12-20
  • 售價: $2,050
  • 貴賓價: 9.5$1,948
  • 語言: 英文
  • 頁數: 240
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1805122762
  • ISBN-13: 9781805122760
  • 相關分類: Python程式語言
  • 海外代購書籍(需單獨結帳)

商品描述

Take your machine learning skills to the next level by mastering the best framework for uncertainty quantification - Conformal Prediction


Key Features:

  • Master Conformal Prediction, a fast-growing ML framework, with Python applications.
  • Explore cutting-edge methods to measure and manage uncertainty in industry applications.
  • The book will explain how Conformal Prediction differs from traditional machine learning.


Book Description:

In the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. "Practical Guide to Applied Conformal Prediction in Python" addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework set to revolutionize uncertainty management in various ML applications.

Embark on a comprehensive journey through Conformal Prediction, exploring its fundamentals and practical applications in binary classification, regression, time series forecasting, imbalanced data, computer vision, and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. Practical examples in Python using real-world datasets reinforce intuitive explanations, ensuring you acquire a robust understanding of this modern framework for uncertainty quantification.

This guide is a beacon for mastering Conformal Prediction in Python, providing a blend of theory and practical application. It serves as a comprehensive toolkit to enhance machine learning skills, catering to professionals from data scientists to ML engineers.


What You Will Learn:

  • The fundamental concepts and principles of conformal prediction
  • Learn how conformal prediction differs from traditional ML methods
  • Apply real-world examples to your own industry applications
  • Explore advanced topics - imbalanced data and multi-class CP
  • Dive into the details of the conformal prediction framework
  • Boost your career as a data scientist, ML engineer, or researcher
  • Learn to apply conformal prediction to forecasting and NLP


Who this book is for:

Ideal for readers with a basic understanding of machine learning concepts and Python programming, this book caters to data scientists, ML engineers, academics, and anyone keen on advancing their skills in uncertainty quantification in ML.

商品描述(中文翻譯)

透過掌握最佳的不確定性量化框架 - 依從預測,將您的機器學習技能提升到新境界

主要特色:


  • 掌握依從預測(Conformal Prediction),這是一個快速成長的機器學習框架,並應用於Python。

  • 探索在產業應用中測量和管理不確定性的尖端方法。

  • 本書將解釋依從預測與傳統機器學習的不同之處。

書籍描述:
在快速演變的機器學習領域,準確量化不確定性的能力至關重要。《Python應用的依從預測實用指南》針對這一需求,深入探討依從預測,這是一個有望徹底改變各種機器學習應用中不確定性管理的尖端框架。

踏上全面探索依從預測的旅程,了解其基本原理及在二元分類、回歸、時間序列預測、不平衡數據、計算機視覺和自然語言處理(NLP)中的實際應用。每一章都深入探討特定方面,提供實用的見解和最佳實踐,以增強預測的可靠性。本書最後專注於多類別分類的細微差別,提供專業級的能力,讓您能夠將依從預測無縫整合到各行各業。使用真實世界數據集的Python實例加強直觀解釋,確保您對這一現代不確定性量化框架有堅實的理解。

本指南是掌握Python中依從預測的明燈,提供理論與實踐應用的結合。它作為一個全面的工具包,提升機器學習技能,適合從數據科學家到機器學習工程師的專業人士。

您將學到的內容:


  • 依從預測的基本概念和原則

  • 了解依從預測與傳統機器學習方法的不同之處

  • 將真實世界的例子應用於您自己的行業應用

  • 探索進階主題 - 不平衡數據和多類別依從預測

  • 深入了解依從預測框架的細節

  • 提升您作為數據科學家、機器學習工程師或研究者的職業生涯

  • 學習如何將依從預測應用於預測和自然語言處理

本書適合誰:
本書適合對機器學習概念和Python編程有基本了解的讀者,特別是數據科學家、機器學習工程師、學術界人士,以及任何希望提升其在機器學習中不確定性量化技能的人士。