Active Machine Learning with Python: Refine and elevate data quality over quantity with active learning
暫譯: 使用 Python 的主動機器學習:透過主動學習提升數據質量而非數量
Masson-Forsythe, Margaux
- 出版商: Packt Publishing
- 出版日期: 2024-03-29
- 售價: $1,860
- 貴賓價: 9.5 折 $1,767
- 語言: 英文
- 頁數: 176
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1835464947
- ISBN-13: 9781835464946
-
相關分類:
Python、程式語言、Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Use active machine learning with Python to improve the accuracy of predictive models, streamline the data analysis process, and adapt to evolving data trends, fostering innovation and progress across diverse fields
Key Features
- Learn how to implement a pipeline for optimal model creation from large datasets and at lower costs
- Gain profound insights within your data while achieving greater efficiency and speed
- Apply your knowledge to real-world use cases and solve complex ML problems
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description
Building accurate machine learning models requires quality data—lots of it. However, for most teams, assembling massive datasets is time-consuming, expensive, or downright impossible. Led by Margaux Masson-Forsythe, a seasoned ML engineer and advocate for surgical data science and climate AI advancements, this hands-on guide to active machine learning demonstrates how to train robust models with just a fraction of the data using Python's powerful active learning tools.
You’ll master the fundamental techniques of active learning, such as membership query synthesis, stream-based sampling, and pool-based sampling and gain insights for designing and implementing active learning algorithms with query strategy and Human-in-the-Loop frameworks. Exploring various active machine learning techniques, you’ll learn how to enhance the performance of computer vision models like image classification, object detection, and semantic segmentation and delve into a machine AL method for selecting the most informative frames for labeling large videos, addressing duplicated data. You’ll also assess the effectiveness and efficiency of active machine learning systems through performance evaluation.
By the end of the book, you’ll be able to enhance your active learning projects by leveraging Python libraries, frameworks, and commonly used tools.
What you will learn
- Master the fundamentals of active machine learning
- Understand query strategies for optimal model training with minimal data
- Tackle class imbalance, concept drift, and other data challenges
- Evaluate and analyze active learning model performance
- Integrate active learning libraries into workflows effectively
- Optimize workflows for human labelers
- Explore the finest active learning tools available today
Who this book is for
Ideal for data scientists and ML engineers aiming to maximize model performance while minimizing costly data labeling, this book is your guide to optimizing ML workflows and prioritizing quality over quantity. Whether you’re a technical practitioner or team lead, you’ll benefit from the proven methods presented in this book to slash data requirements and iterate faster.
Basic Python proficiency and familiarity with machine learning concepts such as datasets and convolutional neural networks is all you need to get started.
商品描述(中文翻譯)
使用 Python 的主動機器學習來提高預測模型的準確性,簡化數據分析過程,並適應不斷演變的數據趨勢,促進各個領域的創新與進步。
主要特點
- 學習如何從大型數據集實現最佳模型創建的流程,並降低成本
- 在數據中獲得深刻見解,同時實現更高的效率和速度
- 將您的知識應用於現實世界的案例,解決複雜的機器學習問題
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書
書籍描述
建立準確的機器學習模型需要高品質的數據——大量的數據。然而,對於大多數團隊來說,組建龐大的數據集既耗時又昂貴,甚至是不可能的。在經驗豐富的機器學習工程師 Margaux Masson-Forsythe 的帶領下,這本關於主動機器學習的實用指南展示了如何使用 Python 的強大主動學習工具,僅用一小部分數據來訓練穩健的模型。
您將掌握主動學習的基本技術,如成員查詢合成、基於流的抽樣和基於池的抽樣,並獲得設計和實施主動學習算法的見解,包括查詢策略和人類參與的框架。通過探索各種主動機器學習技術,您將學習如何提升計算機視覺模型的性能,如圖像分類、物體檢測和語義分割,並深入研究一種機器主動學習方法,用於選擇最具信息量的幀來標註大型視頻,解決重複數據的問題。您還將通過性能評估來評估主動機器學習系統的有效性和效率。
在書籍結束時,您將能夠利用 Python 庫、框架和常用工具來增強您的主動學習項目。
您將學到的內容
- 精通主動機器學習的基本原理
- 理解查詢策略以最小數據實現最佳模型訓練
- 解決類別不平衡、概念漂移和其他數據挑戰
- 評估和分析主動學習模型的性能
- 有效地將主動學習庫整合到工作流程中
- 為人類標註者優化工作流程
- 探索當今最優秀的主動學習工具
本書適合對象
本書非常適合數據科學家和機器學習工程師,旨在最大化模型性能,同時最小化昂貴的數據標註,這本書是您優化機器學習工作流程並優先考慮質量而非數量的指南。無論您是技術實踐者還是團隊負責人,您都將從本書中提出的經驗方法中受益,以減少數據需求並加快迭代速度。
只需具備基本的 Python 熟練度和對機器學習概念(如數據集和卷積神經網絡)的熟悉即可開始。
目錄大綱
- Introducing Active Machine Learning
- Designing Query Strategy Frameworks
- Managing the Human in the Loop
- Applying Active Learning to Computer Vision
- Leveraging Active Learning for Big Data
- Evaluating and Enhancing Efficiency
- Utilizing Tools and Packages for Active Learning
目錄大綱(中文翻譯)
- Introducing Active Machine Learning
- Designing Query Strategy Frameworks
- Managing the Human in the Loop
- Applying Active Learning to Computer Vision
- Leveraging Active Learning for Big Data
- Evaluating and Enhancing Efficiency
- Utilizing Tools and Packages for Active Learning