Machine Learning for Imbalanced Data: Tackle imbalanced datasets using machine learning and deep learning techniques
暫譯: 不平衡數據的機器學習:使用機器學習和深度學習技術處理不平衡數據集
Abhishek, Kumar, Abdelaziz, Mounir
- 出版商: Packt Publishing
- 出版日期: 2023-11-30
- 售價: $1,980
- 貴賓價: 9.5 折 $1,881
- 語言: 英文
- 頁數: 344
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1801070830
- ISBN-13: 9781801070836
-
相關分類:
Machine Learning、DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,800$2,660 -
$2,720$2,584 -
$834$792 -
$1,421Fundamentals of Machine Learning for Predictive Data Analytics : Algorithms, Worked Examples, and Case Studies, 2/e (Hardcover)
-
$1,980$1,881
商品描述
Take your machine learning expertise to the next level with this essential guide, utilizing libraries like imbalanced-learn, PyTorch, scikit-learn, pandas, and NumPy to maximize model performance and tackle imbalanced data
Key Features:
- Understand how to use modern machine learning frameworks with detailed explanations, illustrations, and code samples
- Learn cutting-edge deep learning techniques to overcome data imbalance
- Explore different methods for dealing with skewed data in ML and DL applications
- Purchase of the print or Kindle book includes a free eBook in the PDF format
Book Description:
As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance.
Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods.
As you progress, you'll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that'll demonstrate the practical implementation of each technique.
By the end of this book, you'll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models.
What You Will Learn:
- Use imbalanced data in your machine learning models effectively
- Explore the metrics used when classes are imbalanced
- Understand how and when to apply various sampling methods such as over-sampling and under-sampling
- Apply data-based, algorithm-based, and hybrid approaches to deal with class imbalance
- Combine and choose from various options for data balancing while avoiding common pitfalls
- Understand the concepts of model calibration and threshold adjustment in the context of dealing with imbalanced datasets
Who this book is for:
This book is for machine learning practitioners who want to effectively address the challenges of imbalanced datasets in their projects. Data scientists, machine learning engineers/scientists, research scientists/engineers, and data scientists/engineers will find this book helpful. Though complete beginners are welcome to read this book, some familiarity with core machine learning concepts will help readers maximize the benefits and insights gained from this comprehensive resource.
商品描述(中文翻譯)
提升您的機器學習專業知識,透過這本必備指南,利用 imbalanced-learn、PyTorch、scikit-learn、pandas 和 NumPy 等庫來最大化模型性能並處理不平衡數據
主要特點:
- 了解如何使用現代機器學習框架,並提供詳細的解釋、插圖和程式碼範例
- 學習尖端的深度學習技術以克服數據不平衡
- 探索在機器學習和深度學習應用中處理偏斜數據的不同方法
- 購買印刷版或 Kindle 書籍可獲得免費的 PDF 格式電子書
書籍描述:
作為機器學習從業者,我們經常會遇到不平衡的數據集,其中一個類別的實例數量遠少於另一個類別。許多機器學習算法假設多數類別和少數類別之間存在平衡,這導致在不平衡數據上的性能不佳。本綜合指南幫助您解決這一類別不平衡問題,以顯著提高模型性能。
《不平衡數據的機器學習》首先介紹不平衡數據集所帶來的挑戰及解決這些問題的重要性。接著,它指導您使用不平衡數據時增強傳統機器學習模型性能的技術,包括各種抽樣和成本敏感學習方法。
隨著進展,您將深入了解類似的更高級的深度學習模型技術,並以 PyTorch 作為主要框架。在整本書中,實作範例將提供可運行且可重現的程式碼,展示每種技術的實際應用。
在本書結束時,您將能夠熟練識別和解決類別不平衡問題,並自信地應用各種技術,包括抽樣、成本敏感技術和閾值調整,無論是在傳統機器學習還是深度學習模型中。
您將學到的內容:
- 有效地在您的機器學習模型中使用不平衡數據
- 探索類別不平衡時使用的指標
- 了解何時以及如何應用各種抽樣方法,如過度抽樣和不足抽樣
- 應用基於數據、基於算法和混合方法來處理類別不平衡
- 在避免常見陷阱的同時,結合和選擇各種數據平衡選項
- 理解在處理不平衡數據集時模型校準和閾值調整的概念
本書適合誰:
本書適合希望有效解決項目中不平衡數據集挑戰的機器學習從業者。數據科學家、機器學習工程師/科學家、研究科學家/工程師以及數據科學家/工程師將會發現本書非常有幫助。雖然完全的初學者也歡迎閱讀本書,但對核心機器學習概念的某些熟悉程度將有助於讀者最大化從這本綜合資源中獲得的好處和見解。