Imbalanced Learning: Foundations, Algorithms, and Applications (Hardcover)
暫譯: 不平衡學習:基礎、演算法與應用(精裝版)

Haibo He, Yunqian Ma

  • 出版商: IEEE
  • 出版日期: 2013-07-01
  • 售價: $4,770
  • 貴賓價: 9.5$4,532
  • 語言: 英文
  • 頁數: 216
  • 裝訂: Hardcover
  • ISBN: 1118074629
  • ISBN-13: 9781118074626
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

The first book of its kind to review the current status and future direction of the exciting new branch of machine learning/data mining called imbalanced learning

Imbalanced learning focuses on how an intelligent system can learn when it is provided with imbalanced data. Solving imbalanced learning problems is critical in numerous data-intensive networked systems, including surveillance, security, Internet, finance, biomedical, defense, and more. Due to the inherent complex characteristics of imbalanced data sets, learning from such data requires new understandings, principles, algorithms, and tools to transform vast amounts of raw data efficiently into information and knowledge representation.

The first comprehensive look at this new branch of machine learning, this book offers a critical review of the problem of imbalanced learning, covering the state of the art in techniques, principles, and real-world applications. Featuring contributions from experts in both academia and industry, Imbalanced Learning: Foundations, Algorithms, and Applications provides chapter coverage on:

  • Foundations of Imbalanced Learning
  • Imbalanced Datasets: From Sampling to Classifiers
  • Ensemble Methods for Class Imbalance Learning
  • Class Imbalance Learning Methods for Support Vector Machines
  • Class Imbalance and Active Learning
  • Nonstationary Stream Data Learning with Imbalanced Class Distribution
  • Assessment Metrics for Imbalanced Learning

Imbalanced Learning: Foundations, Algorithms, and Applications will help scientists and engineers learn how to tackle the problem of learning from imbalanced datasets, and gain insight into current developments in the field as well as future research directions.

商品描述(中文翻譯)

這是第一本針對不平衡學習(imbalanced learning)這一令人興奮的新興機器學習/數據挖掘分支,回顧其當前狀況和未來方向的書籍。

不平衡學習專注於智能系統在面對不平衡數據時如何進行學習。解決不平衡學習問題對於許多數據密集型的網絡系統至關重要,包括監控、安全、互聯網、金融、生物醫學、國防等。由於不平衡數據集固有的複雜特性,從這類數據中學習需要新的理解、原則、算法和工具,以有效地將大量原始數據轉化為信息和知識的表徵。

這本書是對這一新興機器學習分支的首次全面探討,對不平衡學習問題進行了關鍵性的回顧,涵蓋了技術、原則和實際應用的最新進展。書中匯集了來自學術界和業界的專家貢獻,不平衡學習:基礎、算法與應用 提供了以下章節內容:


  • 不平衡學習的基礎

  • 不平衡數據集:從抽樣到分類器

  • 用於類別不平衡學習的集成方法

  • 支持向量機的類別不平衡學習方法

  • 類別不平衡與主動學習

  • 具有不平衡類別分佈的非平穩流數據學習

  • 不平衡學習的評估指標

不平衡學習:基礎、算法與應用 將幫助科學家和工程師學習如何應對不平衡數據集的學習問題,並深入了解該領域的當前發展及未來研究方向。

最後瀏覽商品 (20)