Data Analysis with Python: A Modern Approach
暫譯: 使用 Python 進行數據分析:現代方法

David Taieb

  • 出版商: Packt Publishing
  • 出版日期: 2018-12-28
  • 定價: $1,380
  • 售價: 8.0$1,104
  • 語言: 英文
  • 頁數: 490
  • 裝訂: Paperback
  • ISBN: 1789950066
  • ISBN-13: 9781789950069
  • 相關分類: Python程式語言Data Science
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Learn a modern approach to data analysis using Python to harness the power of programming and AI across your data. Detailed case studies bring this modern approach to life across visual data, social media, graph algorithms, and time series analysis.

Key Features

  • Bridge your data analysis with the power of programming, complex algorithms, and AI
  • Use Python and its extensive libraries to power your way to new levels of data insight
  • Work with AI algorithms, TensorFlow, graph algorithms, NLP, and financial time series
  • Explore this modern approach across with key industry case studies and hands-on projects

Book Description

Data Analysis with Python offers a modern approach to data analysis so that you can work with the latest and most powerful Python tools, AI techniques, and open source libraries. Industry expert David Taieb shows you how to bridge data science with the power of programming and algorithms in Python. You'll be working with complex algorithms, and cutting-edge AI in your data analysis. Learn how to analyze data with hands-on examples using Python-based tools and Jupyter Notebook. You'll find the right balance of theory and practice, with extensive code files that you can integrate right into your own data projects.

Explore the power of this approach to data analysis by then working with it across key industry case studies. Four fascinating and full projects connect you to the most critical data analysis challenges you're likely to meet in today. The first of these is an image recognition application with TensorFlow – embracing the importance today of AI in your data analysis. The second industry project analyses social media trends, exploring big data issues and AI approaches to natural language processing. The third case study is a financial portfolio analysis application that engages you with time series analysis - pivotal to many data science applications today. The fourth industry use case dives you into graph algorithms and the power of programming in modern data science. You'll wrap up with a thoughtful look at the future of data science and how it will harness the power of algorithms and artificial intelligence.

What you will learn

  • A new toolset that has been carefully crafted to meet for your data analysis challenges
  • Full and detailed case studies of the toolset across several of today's key industry contexts
  • Become super productive with a new toolset across Python and Jupyter Notebook
  • Look into the future of data science and which directions to develop your skills next

Who this book is for

This book is for developers wanting to bridge the gap between them and data scientists. Introducing PixieDust from its creator, the book is a great desk companion for the accomplished Data Scientist. Some fluency in data interpretation and visualization is assumed. It will be helpful to have some knowledge of Python, using Python libraries, and some proficiency in web development.

Table of Contents

  1. Programming and Data Science – A New Toolset
  2. Python and Jupyter Notebooks to Power your Data Analysis
  3. Accelerate your Data Analysis with Python Libraries
  4. Publish your Data Analysis to the Web - the PixieApp Tool
  5. Python and PixieDust Best Practices and Advanced Concepts
  6. Analytics Study: AI and Image Recognition with TensorFlow
  7. Analytics Study: NLP and Big Data with Twitter Sentiment Analysis
  8. Analytics Study: Prediction - Financial Time Series Analysis and Forecasting
  9. Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis
  10. The Future of Data Analysis and Where to Develop your Skills

商品描述(中文翻譯)

學習使用 Python 進行現代數據分析的方法,以利用編程和人工智慧的力量來處理您的數據。詳細的案例研究使這種現代方法在視覺數據、社交媒體、圖形算法和時間序列分析中生動呈現。

主要特點
- 將您的數據分析與編程、複雜算法和人工智慧的力量相結合
- 使用 Python 及其廣泛的庫來提升您的數據洞察能力
- 使用人工智慧算法、TensorFlow、圖形算法、自然語言處理 (NLP) 和金融時間序列進行工作
- 通過關鍵行業案例研究和實作專案探索這種現代方法

書籍描述
《使用 Python 進行數據分析》提供了一種現代的數據分析方法,使您能夠使用最新和最強大的 Python 工具、人工智慧技術和開源庫。行業專家 David Taieb 向您展示如何將數據科學與 Python 中的編程和算法的力量相結合。您將在數據分析中使用複雜的算法和尖端的人工智慧。學習如何使用基於 Python 的工具和 Jupyter Notebook 進行數據分析的實作範例。您將找到理論與實踐的正確平衡,並擁有大量的代碼文件,可以直接整合到自己的數據專案中。

通過關鍵行業案例研究,探索這種數據分析方法的力量。四個引人入勝且完整的專案將您與當今最重要的數據分析挑戰相連接。第一個專案是使用 TensorFlow 的圖像識別應用,體現了人工智慧在當今數據分析中的重要性。第二個行業專案分析社交媒體趨勢,探索大數據問題和人工智慧在自然語言處理中的應用。第三個案例研究是一個金融投資組合分析應用,讓您參與時間序列分析,這對許多當今的數據科學應用至關重要。第四個行業用例深入探討圖形算法和現代數據科學中的編程力量。您將以對數據科學未來的深思熟慮的展望作結,並了解它將如何利用算法和人工智慧的力量。

您將學到的內容
- 一套經過精心設計的新工具集,以應對您的數據分析挑戰
- 涵蓋當今幾個關鍵行業背景的工具集的完整和詳細案例研究
- 在 Python 和 Jupyter Notebook 中使用新工具集提高生產力
- 展望數據科學的未來以及接下來發展技能的方向

本書適合誰
本書適合希望縮短與數據科學家之間差距的開發人員。這本書由其創作者介紹 PixieDust,是一位成功的數據科學家的絕佳桌上伴侶。假設讀者對數據解釋和可視化有一定的流利度。擁有一些 Python 知識、使用 Python 庫的經驗以及一定的網頁開發能力將會有所幫助。

目錄
1. 編程與數據科學 – 新工具集
2. 使用 Python 和 Jupyter Notebook 提升您的數據分析
3. 使用 Python 庫加速您的數據分析
4. 將您的數據分析發佈到網絡 - PixieApp 工具
5. Python 和 PixieDust 的最佳實踐與進階概念
6. 分析研究:使用 TensorFlow 的人工智慧與圖像識別
7. 分析研究:使用 Twitter 情感分析的 NLP 與大數據
8. 分析研究:預測 - 金融時間序列分析與預測
9. 分析研究:圖形算法 - 美國國內航班數據分析
10. 數據分析的未來及技能發展方向