Hands-on Machine Learning for Cyber Security: Safeguard your system by making your machines intelligent using Python ecosystem
暫譯: 實作機器學習於網路安全:利用Python生態系統讓您的系統智能化以保護安全

Soma Halder, Sinan Ozdemir

買這商品的人也買了...

商品描述

Get into the world of smart data security using the power of machine learning algorithms

Key Features

  • Apply machine learning algorithms and cyber security fundamentals to secure your organization data using practical approach
  • Be a Data Ninja by performing big data manipulation on any data size to secure your system
  • Automate your daily workflow by applying the use cases to many facets of security
  • Implement smart solutions to your existing cyber security products and effectively build intelligent solutions

Book Description

Machine Learning is a growing trend in every technological field including computer security. Many research and practical applications are in line which has a potential to change the way how data is secured. With this book, you will stand a chance to mark your developments in cyber security domain using machine learning capabilities.

This book begins with giving you the basics of machine learning in cyber security using python and their extensive libraries support. You will explore various machine learning domains such as time series analysis, ensemble modeling to get your foundations right. You will implement your learning in various examples such as building system to identify malicious URLs, bypass defensive technologies, and build a program for detecting email frauds and spam using supervised learning and Naive Bayes algorithm. Later you will learn to make effective use of K means algorithm, to develop a solution to detect and alert any malicious activity going on the network. Next, you will be building weightless and complex decision tree and you will implement Digital biometrics and fingerprint from users interaction to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with Tensorflow and learn how deep learning is effective in creating models and training the system from previous fraudulent events so that they can be mitigated in future.

By the end of this book, you will be able to build, apply, and evaluate machine learning algorithms to identify potential threats such as intrusion detection and malware. You will be introduced to cutting-edge big data tools and GPU processing to show how these techniques can be applied to extremely large data sets to detect traffic and end-point behavior.

What you will learn

  • Gain the knowledge on using machine learning algorithms to get started with the concepts in cyber security using complex datasets.
  • Solve real world concerns of cyber security using Machine learning algorithms such as Clustering, K means, Linear regression, Naive Bayes etc
  • Explore the beauty of Digital biometrics and fingerprinting for validating whether the user is impersonator or a legitimate user.
  • Learn how to speed up the system using Python GPU libraries with NumPY, Scikit-learn and CUDA programs
  • Learn to use deep learning in detecting financial frauds and train your system effectively so that they can be mitigated in future.
  • Understand the power of Tensorflow in cybersecurity domain and implement real world examples

Who This Book Is For

This book is for the data scientists, machine learning developers, security researchers, and anyone who is curious to apply machine learning to up-skill computer security. Having some working knowledge of Python, basics of machine learning and cyber security fundamentals will help to get the most out of the book.

商品描述(中文翻譯)

進入智慧數據安全的世界,利用機器學習演算法的力量

主要特點


  • 應用機器學習演算法和網路安全基礎知識,以實務方法保護您的組織數據

  • 成為數據忍者,對任何大小的數據進行大數據操作,以保護您的系統

  • 通過將使用案例應用於安全的多個面向,自動化您的日常工作流程

  • 對現有的網路安全產品實施智慧解決方案,並有效地構建智能解決方案

書籍描述

機器學習是每個技術領域中不斷增長的趨勢,包括計算機安全。許多研究和實務應用正在進行中,這些應用有潛力改變數據安全的方式。通過本書,您將有機會在網路安全領域中利用機器學習的能力來標記您的發展。

本書首先介紹機器學習在網路安全中的基礎知識,使用 Python 及其廣泛的庫支持。您將探索各種機器學習領域,如時間序列分析、集成建模,以建立正確的基礎。您將在各種範例中實施您的學習,例如構建系統以識別惡意 URL、繞過防禦技術,以及使用監督式學習和 Naive Bayes 演算法構建檢測電子郵件詐騙和垃圾郵件的程序。接下來,您將學會有效利用 K-means 演算法,開發檢測和警報網路上任何惡意活動的解決方案。然後,您將構建無權重且複雜的決策樹,並實施數位生物識別和用戶互動的指紋,以驗證用戶是否為合法用戶。最後,您將看到如何利用 TensorFlow 改變遊戲,並學習深度學習在創建模型和從先前的詐騙事件中訓練系統方面的有效性,以便未來能夠減輕這些事件。

在本書結束時,您將能夠構建、應用和評估機器學習演算法,以識別潛在威脅,如入侵檢測和惡意軟體。您將接觸到尖端的大數據工具和 GPU 處理,展示這些技術如何應用於極大的數據集,以檢測流量和端點行為。

您將學到什麼


  • 獲得使用機器學習演算法的知識,以便開始了解網路安全中的概念,使用複雜的數據集。

  • 使用機器學習演算法(如聚類、K-means、線性回歸、Naive Bayes 等)解決網路安全的現實問題。

  • 探索數位生物識別和指紋識別的美,以驗證用戶是否為冒名頂替者或合法用戶。

  • 學習如何使用 Python GPU 庫(如 NumPY、Scikit-learn 和 CUDA 程序)加速系統。

  • 學習如何在檢測金融詐騙中使用深度學習,並有效訓練您的系統,以便未來能夠減輕這些事件。

  • 了解 TensorFlow 在網路安全領域的力量並實施現實世界的範例。

本書適合誰

本書適合數據科學家、機器學習開發者、安全研究人員,以及任何對應用機器學習提升計算機安全感興趣的人。擁有一些 Python 的工作知識、機器學習的基礎知識和網路安全基礎將有助於您充分利用本書。