Ensemble Machine Learning
暫譯: 集成機器學習

Ankit Dixit

  • 出版商: Packt Publishing
  • 出版日期: 2017-12-20
  • 售價: $2,030
  • 貴賓價: 9.5$1,929
  • 語言: 英文
  • 頁數: 438
  • 裝訂: Paperback
  • ISBN: 178829775X
  • ISBN-13: 9781788297752
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Key Features

  • Learn how to maximize the use of machine learning algorithms such as Random forests, decision tress, AdaBoost, K-nearest neighbor.
  • Practical approach explaining how most powerful machine learning models are built.
  • A Comprehensive guide covering key aspects of Ensembling techniques

Book Description

Ensembling is a technique of combining two or more similar or dissimilar machine leaning algorithms to create a model that delivers superior prediction power. This book will help the readers to develop an understanding in how they can use multiple algorithms to make a strong predictive model. This book contains Python code for different algorithms so that the user can easily understand and implement on their systems.

This book covers different machine learning algorithms which are widely used in practical world for making predictions and classifications. The readers will gain knowledge of different machine learning aspects in one book such as bagging (Decision trees and Random forests), Boosting (Ada-boost etc.) and stacking (combination of Bagging and Boosting algorithms and other) and then learn how to implement them in building Ensemble models. As the machine learning touches almost every field of the digital world, user will come to know how these algorithms can be used in different applications such as computer vision, speech recognition, making recommendations, grouping and document classification, fitting regression on data.

By the end of this book you will understand how machine learning algorithms work behind the scenes and how algorithms can be combined to reduce common problems, and build simple efficient machine learning models with the real use cases mentioned in the book.

What you will learn

  • Understand why bagging improves classification and regression performance
  • Understand and implement AdaBoost
  • Understand the bootstrap method and its application to bagging
  • Understand and implement Random Forest
  • Understand and implement stacking (Combination of Bagging and Boosting Algorithms and other)
  • Handle the skew data sets for maximum prediction accuracy.
  • Improving the prediction accuracy by fine tuning the model parameters.
  • Analysis of trained predictive model for over-fitting/under-fitting cases.
  • Use developed algorithms for practical applications.

商品描述(中文翻譯)

關鍵特點
- 學習如何最大化使用機器學習演算法,如隨機森林(Random forests)、決策樹(decision trees)、AdaBoost、K-最近鄰(K-nearest neighbor)。
- 實用的方法解釋如何構建最強大的機器學習模型。
- 一本全面的指南,涵蓋集成技術的關鍵方面。

書籍描述
集成(Ensembling)是一種將兩個或更多相似或不相似的機器學習演算法結合起來,以創建一個具有更強預測能力的模型的技術。本書將幫助讀者理解如何使用多個演算法來建立一個強大的預測模型。本書包含不同演算法的Python程式碼,以便用戶能夠輕鬆理解並在其系統上實現。

本書涵蓋了在實際世界中廣泛使用的不同機器學習演算法,用於進行預測和分類。讀者將在一本書中獲得有關不同機器學習方面的知識,例如裝袋(bagging,決策樹和隨機森林)、提升(Boosting,如AdaBoost等)和堆疊(stacking,裝袋和提升演算法的組合等),然後學習如何在構建集成模型時實現它們。隨著機器學習幾乎觸及數位世界的每一個領域,用戶將了解到這些演算法如何應用於不同的應用場景,如計算機視覺、語音識別、推薦系統、分組和文件分類、數據回歸擬合等。

在本書結束時,您將了解機器學習演算法在幕後的運作方式,以及如何將演算法結合以減少常見問題,並根據書中提到的實際案例構建簡單高效的機器學習模型。

您將學到的內容
- 理解為什麼裝袋能改善分類和回歸性能
- 理解並實現AdaBoost
- 理解自助法(bootstrap method)及其在裝袋中的應用
- 理解並實現隨機森林(Random Forest)
- 理解並實現堆疊(堆疊是裝袋和提升演算法的組合等)
- 處理偏斜數據集以達到最佳預測準確性
- 通過微調模型參數來提高預測準確性
- 分析訓練的預測模型以檢查過擬合/欠擬合情況
- 將開發的演算法用於實際應用。