Ensemble Learning for AI Developers: Learn Bagging, Stacking, and Boosting Methods with Use Cases
暫譯: 人工智慧開發者的集成學習:學習袋裝法、堆疊法和提升法及其應用案例

Kumar, Alok, Jain, Mayank

  • 出版商: Apress
  • 出版日期: 2020-06-19
  • 售價: $1,900
  • 貴賓價: 9.5$1,805
  • 語言: 英文
  • 頁數: 136
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1484259394
  • ISBN-13: 9781484259399
  • 相關分類: 人工智慧
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

Use ensemble learning techniques and models to improve your machine learning results.
Ensemble Learning for AI Developers starts you at the beginning with an historical overview and explains key ensemble techniques and why they are needed. You then will learn how to change training data using bagging, bootstrap aggregating, random forest models, and cross-validation methods. Authors Kumar and Jain provide best practices to guide you in combining models and using tools to boost performance of your machine learning projects. They teach you how to effectively implement ensemble concepts such as stacking and boosting and to utilize popular libraries such as Keras, Scikit Learn, TensorFlow, PyTorch, and Microsoft LightGBM. Tips are presented to apply ensemble learning in different data science problems, including time series data, imaging data, and NLP. Recent advances in ensemble learning are discussed. Sample code is provided in the form of scripts and the IPython notebook.

What You Will Learn

  • Understand the techniques and methods utilized in ensemble learning
  • Use bagging, stacking, and boosting to improve performance of your machine learning projects by combining models to decrease variance, improve predictions, and reduce bias
  • Enhance your machine learning architecture with ensemble learning


Who This Book Is For

Data scientists and machine learning engineers keen on exploring ensemble learning

商品描述(中文翻譯)

使用集成學習技術和模型來改善您的機器學習結果。
AI 開發者的集成學習從歷史概述開始,解釋了關鍵的集成技術及其必要性。接著,您將學習如何使用袋裝法(bagging)、自助聚合(bootstrap aggregating)、隨機森林模型(random forest models)和交叉驗證方法(cross-validation methods)來改變訓練數據。作者 Kumar 和 Jain 提供最佳實踐,指導您如何結合模型並使用工具來提升機器學習專案的性能。他們教您如何有效實施集成概念,如堆疊(stacking)和提升(boosting),並利用流行的庫,如 Keras、Scikit Learn、TensorFlow、PyTorch 和 Microsoft LightGBM。還提供了在不同數據科學問題中應用集成學習的提示,包括時間序列數據、影像數據和自然語言處理(NLP)。討論了集成學習的最新進展。範例代碼以腳本和 IPython 筆記本的形式提供。

您將學到什麼


  • 理解集成學習中使用的技術和方法

  • 使用袋裝法、堆疊和提升來通過結合模型來改善機器學習專案的性能,以減少方差、改善預測和降低偏差

  • 通過集成學習增強您的機器學習架構



本書適合誰

對探索集成學習感興趣的數據科學家和機器學習工程師

作者簡介

Alok Kumar is an AI practitioner and innovation lead at Publicis Sapient. He has extensiveexperience in leading strategic initiatives and driving cutting-edge, fast-paced innovations. He won several awards and he is passionate about democratizing AI knowledge. He manages multiple non- profit learning and creative groups in NCR.


Mayank Jain currently works as Manager Technology at the Publicis Sapient Innovation Lab Kepler as an AI/ML expert. He has more than 10 years of industry experience working on cutting-edge projects to make computers see and think using techniques such as deep learning, machine learning, and computer vision. He has written several international publications, holds patents in his name, and has been awarded multiple times for his contributions.

作者簡介(中文翻譯)

Alok Kumar 是 Publicis Sapient 的人工智慧實踐者和創新負責人。他在領導戰略倡議和推動尖端、快速創新方面擁有豐富的經驗。他獲得了多個獎項,並對普及人工智慧知識充滿熱情。他在 NCR 管理多個非營利學習和創意團體。


Mayank Jain 目前擔任 Publicis Sapient Innovation Lab Kepler 的技術經理,專注於人工智慧/機器學習領域。他擁有超過 10 年的行業經驗,參與尖端項目,使用深度學習、機器學習和計算機視覺等技術使計算機具備視覺和思考能力。他撰寫了多篇國際出版物,擁有多項專利,並因其貢獻多次獲獎。

最後瀏覽商品 (20)