Mastering Machine Learning with Python in Six Steps, Second Edition: A Practical Implementation Guide to Predictive Data Analytics Using Python
暫譯: 精通 Python 機器學習六步驟(第二版):實用的預測數據分析實作指南
Swamynathan, Manohar
- 出版商: Apress
- 出版日期: 2019-10-02
- 售價: $2,370
- 貴賓價: 9.5 折 $2,252
- 語言: 英文
- 頁數: 370
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1484249461
- ISBN-13: 9781484249468
-
相關分類:
Python、程式語言、Machine Learning、Data Science
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$480$470
商品描述
Explore fundamental to advanced Python 3 topics in six steps, all designed to make you a worthy practitioner. This updated version's approach is based on the "six degrees of separation" theory, which states that everyone and everything is a maximum of six steps away and presents each topic in two parts: theoretical concepts and practical implementation using suitable Python 3 packages.
You'll start with the fundamentals of Python 3 programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as exploratory analysis, feature dimension reduction, regressions, time series forecasting and their efficient implementation in Scikit-learn are covered as well. You'll also learn commonly used model diagnostic and tuning techniques. These include optimal probability cutoff point for class creation, variance, bias, bagging, boosting, ensemble voting, grid search, random search, Bayesian optimization, and the noise reduction technique for IoT data.
Finally, you'll review advanced text mining techniques, recommender systems, neural networks, deep learning, reinforcement learning techniques and their implementation. All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage.
What You'll Learn
- Understand machine learning development and frameworks
- Assess model diagnosis and tuning in machine learning
- Examine text mining, natuarl language processing (NLP), and recommender systems
- Review reinforcement learning and CNN
Python developers, data engineers, and machine learning engineers looking to expand their knowledge or career into machine learning area.
商品描述(中文翻譯)
探索從基礎到進階的 Python 3 主題,分為六個步驟,旨在讓您成為一位值得信賴的實踐者。這個更新版本的方式基於「六度分隔」理論,該理論指出每個人和每件事最多相隔六步,並將每個主題分為兩個部分:理論概念和使用適當的 Python 3 套件進行的實踐實現。
您將從 Python 3 程式語言的基礎開始,了解機器學習的歷史、演變以及系統開發框架。書中涵蓋了關鍵的數據挖掘/分析概念,例如探索性分析、特徵維度縮減、回歸、時間序列預測及其在 Scikit-learn 中的高效實現。您還將學習常用的模型診斷和調整技術,包括類別創建的最佳概率截止點、方差、偏差、袋裝法、提升法、集成投票、網格搜索、隨機搜索、貝葉斯優化以及針對物聯網數據的噪聲減少技術。
最後,您將回顧進階的文本挖掘技術、推薦系統、神經網絡、深度學習、強化學習技術及其實現。書中呈現的所有程式碼將以 iPython 筆記本的形式提供,讓您能夠嘗試這些範例並加以擴展以獲取更多優勢。
您將學到的內容:
- 了解機器學習的開發和框架
- 評估機器學習中的模型診斷和調整
- 檢視文本挖掘、自然語言處理 (NLP) 和推薦系統
- 回顧強化學習和卷積神經網絡 (CNN)
本書適合對象:
希望擴展其知識或職業生涯至機器學習領域的 Python 開發者、數據工程師和機器學習工程師。
作者簡介
作者簡介(中文翻譯)
Manohar Swamynathan 是一位數據科學實踐者和熱衷的程式設計師,擁有超過 14 年的經驗,涵蓋多個與數據科學相關的領域,包括數據倉儲、商業智慧 (Business Intelligence, BI)、分析工具開發、即時分析、預測建模、數據科學產品開發、諮詢、制定策略及執行分析計劃。他的職業生涯涵蓋了數據在不同領域的生命週期,例如美國抵押貸款銀行、零售/電子商務、保險和工業物聯網。他擁有物理學、數學和計算機專業的學士學位,以及項目管理的碩士學位。目前,他居住在印度的班加羅爾,這裡被譽為印度的矽谷。