Machine Learning for Absolute Beginners: A Plain English Introduction (Paperback)
暫譯: 絕對初學者的機器學習:簡明易懂的入門指南(平裝本)

Oliver Theobald

買這商品的人也買了...

相關主題

商品描述

 

Ready to crank up a virtual server to smash through petabytes of data? Want to add 'Machine Learning' to your LinkedIn profile?

 

 

Well, hold on there...

 

 

Before you embark on your epic journey into the world of machine learning, there is a lot of basic theory to march through first.


But rather than spend $30-$50 USD on a dense long textbook, you may want to read this book first. As a clear and concise alternative to a textbook, this short book has become a Best Seller on Amazon (in its category) with a practical and high-level introduction to machine learning.
Machine Learning for Absolute Beginners has been written and designed for absolute beginners. This means plain-English explanations and no coding experience required. Where core algorithms are introduced, clear explanations and visual examples are added to make it easy and engaging to follow along at home.
This title opens with a general introduction to machine learning from a macro level. The second half of the book is more practical and dives into introducing specific algorithms applied in machine learning, including their pros and cons. At the end of the book, I share insights and advice on further learning and careers in this space.
Disclaimer: If you have passed the 'beginner' stage in your study of machine learning and are ready to tackle deep learning and Scikit-learn, you would be well served with a long-format textbook, such as the O'Reilly Media series. I don't wish to disappoint readers with content that is too easy. If, however, you are yet to reach that Lion King moment - as a fully grown Simba looking over the Pride Lands of Africa - then this is the book to gently hoist you up and offer you a clear lay of the land.

 

 

In this step-by-step guide you will learn:

- The very basics of Machine Learning that all beginners need to master
- Association Analysis used in the retail and E-commerce space
- Recommender Systems as you've seen online, including Amazon
- Decision Trees for visually mapping and classifying decision processes
- Regression Analysis to create trend lines and predict trends
- Data Reduction and Principle Component Analysis to cut through the noise
- k-means and k-nearest Neighbor (k-nn) Clustering to discover new data groupings
- A very basic introduction to Deep Learning/Neural Networks
- Bias/Variance to optimize your machine learning model
- Careers in the field

 

 

If you want to learn more, please go ahead and send a free sample to your device or check out Amazon's handy 'Look Inside' feature.

 

商品描述(中文翻譯)

準備好啟動虛擬伺服器來處理數PB的數據了嗎?想在你的 LinkedIn 個人檔案上添加「機器學習」嗎?

等等...

在你踏上機器學習的史詩之旅之前,首先需要掌握許多基本理論。

但與其花費 30 到 50 美元購買一本內容繁瑣的長篇教科書,你可能想先閱讀這本書。作為教科書的清晰簡明替代品,這本短小的書籍在亞馬遜(其類別中)成為了暢銷書,提供了對機器學習的實用和高層次的介紹。《機器學習入門》是為完全初學者撰寫和設計的。這意味著使用簡單的英文解釋,且不需要任何編程經驗。在介紹核心算法的地方,添加了清晰的解釋視覺示例,使讀者在家中也能輕鬆且有趣地跟隨學習。這本書以宏觀層面介紹機器學習的基本概念作為開篇。書的後半部分則更具實用性,深入介紹在機器學習中應用的特定算法,包括它們的優缺點。在書的最後,我分享了在這個領域進一步學習和職業發展的見解和建議。

免責聲明:如果你已經超越了機器學習的「初學者」階段,並準備好挑戰深度學習和 Scikit-learn,那麼長篇教科書,如 O'Reilly Media 系列,將更適合你。我不希望讓讀者失望於內容過於簡單。然而,如果你還未達到那個獅子王時刻——作為一隻完全成長的辛巴俯瞰非洲的驕傲之地——那麼這本書將輕柔地引導你,並為你提供清晰的全貌。

在這本逐步指南中,你將學到:

- 所有初學者需要掌握的機器學習基本知識
- 在零售和電子商務領域使用的關聯分析
- 你在網上看到的推薦系統,包括亞馬遜
- 用於視覺化映射和分類決策過程的決策樹
- 用於創建趨勢線和預測趨勢的回歸分析
- 用於過濾噪音的數據降維主成分分析
- 用於發現新數據分組的k-meansk-最近鄰 (k-nn) 聚類
- 對深度學習/神經網絡的非常基本介紹
- 用於優化你的機器學習模型的偏差/方差
- 在該領域的職業發展

如果你想了解更多,請隨時將免費樣本發送到你的設備,或查看亞馬遜的便捷「內部預覽」功能。