Introduction to Machine Learning with Python: A Guide for Beginners in Data Science
暫譯: Python 機器學習入門:數據科學初學者指南
David James
- 出版商: W. W. Norton
- 出版日期: 2018-08-25
- 售價: $820
- 貴賓價: 9.5 折 $779
- 語言: 英文
- 頁數: 248
- 裝訂: Paperback
- ISBN: 1726230872
- ISBN-13: 9781726230872
-
相關分類:
Python、程式語言、Machine Learning、Data Science
無法訂購
商品描述
***** BUY NOW (will soon return to 24.78 $) ***** MONEY BACK GUARANTEE BY AMAZON (See Below FAQ) *****
******Free eBook for customers who purchase the print book from Amazon******
Are you thinking of learning more about Machine Learning using Python? (For Beginners)
This book would seek to explain common terms and algorithms in an intuitive way. The author used a progressive approach whereby we start out slowly and improve on the complexity of our solutions.From AI Sciences Publisher
Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses. To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach which would lead to better mental representations.Step By Step Guide and Visual Illustrations and Examples
This book and the accompanying examples, you would be well suited to tackle problems which pique your interests using machine learning. Instead of tough math formulas, this book contains several graphs and images which detail all important Machine Learning concepts and their applications.Target Users
The book designed for a variety of target audiences. The most suitable users would include:- Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field.
- Software developers and engineers with a strong programming background but seeking to break into the field of machine learning.
- Seasoned professionals in the field of artificial intelligence and machine learning who desire a bird’s eye view of current techniques and approaches.
What’s Inside This Book?
- Supervised Learning Algorithms
- Unsupervised Learning Algorithms
- Semi-supervised Learning Algorithms
- Reinforcement Learning Algorithms
- Overfitting and underfitting
- correctness
- The Bias-Variance Trade-off
- Feature Extraction and Selection
- A Regression Example: Predicting Boston Housing Prices
- Import Libraries:
- How to forecast and Predict
- Popular Classification Algorithms
- Introduction to K Nearest Neighbors
- Introduction to Support Vector Machine
- Example of Clustering
- Running K-means with Scikit-Learn
- Introduction to Deep Learning using TensorFlow
- Deep Learning Compared to Other Machine Learning Approaches
- Applications of Deep Learning
- How to run the Neural Network using TensorFlow
- Cases of Study with Real Data
- Sources & References
Frequently Asked Questions
Q: Is this book for me and do I need programming experience? A: If you want to smash Machine Learning from scratch, this book is for you. If you already wrote a few lines of code and recognize basic programming statements, you’ll be OK. Q: Does this book include everything I need to become a Machine Learning expert? A: Unfortunately, no. This book is designed for readers taking their first steps in Machine Learning and further learning will be required beyond this book to master all aspects of Machine Learning. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at contact@aisciences.net. If you need to see the quality of our job, AI Sciences Company offering you a free eBook in Machine Learning with Python written by the data scientist Alain Kaufmann at http://aisciences.net/free-books/商品描述(中文翻譯)
***** 現在購買(將很快回到 24.78 美元) ***** 亞馬遜提供退款保證(請參見下方常見問題) *****
****** 購買印刷書籍的客戶可獲得免費電子書 ******
您是否考慮學習更多有關使用 Python 的機器學習?(適合初學者)
本書旨在以直觀的方式解釋常見術語和算法。作者採用漸進式的方法,讓我們從簡單開始,逐步提高解決方案的複雜性。
來自 AI Sciences 出版社
我們的書籍可能是初學者的最佳選擇;這是一本逐步指南,適合任何想從零開始學習人工智慧和數據科學的人。它將幫助您建立堅實的基礎,並學習其他高級課程。為了充分理解將要涵蓋的概念,建議讀者採取實踐的方法,這將有助於更好的心理表徵。
逐步指南和視覺插圖及範例
本書及其附帶的範例,將使您能夠使用機器學習解決引起您興趣的問題。這本書不包含艱澀的數學公式,而是包含多個圖表和圖片,詳細說明所有重要的機器學習概念及其應用。
目標讀者
本書設計針對多種目標受眾。最合適的使用者包括:
- 任何對算法如何得出預測感到好奇但對該領域沒有先前知識的人。
- 具有強大編程背景的軟體開發人員和工程師,但希望進入機器學習領域。
- 在人工智慧和機器學習領域的資深專業人士,渴望了解當前技術和方法的全貌。
本書內容包括?
- 監督學習算法
- 非監督學習算法
- 半監督學習算法
- 強化學習算法
- 過擬合與欠擬合
- 正確性
- 偏差-方差權衡
- 特徵提取與選擇
- 回歸範例:預測波士頓房價
- 匯入庫:
- 如何預測與預測
- 常見分類算法
- K 最近鄰介紹
- 支持向量機介紹
- 聚類範例
- 使用 Scikit-Learn 執行 K-means
- 使用 TensorFlow 的深度學習介紹
- 深度學習與其他機器學習方法的比較
- 深度學習的應用
- 如何使用 TensorFlow 執行神經網絡
- 實際數據的案例研究
- 來源與參考
常見問題
問:這本書適合我嗎?我需要編程經驗嗎?
答:如果您想從零開始學習機器學習,這本書適合您。如果您已經寫過幾行代碼並認識基本的編程語句,您就可以了。
問:這本書是否包含我成為機器學習專家的所有所需內容?
答:不幸的是,沒有。這本書是為初學者設計的,進一步的學習將在本書之外需要以掌握機器學習的所有方面。
問:如果這本書不適合我,我可以退款嗎?
答:可以,如果您不滿意,亞馬遜會為您退款,欲了解更多有關亞馬遜退款服務的信息,請訪問亞馬遜幫助平台。如果您發送電子郵件至 contact@aisciences.net,我們也很樂意幫助您。**如果您需要查看我們工作的質量,AI Sciences 公司為您提供由數據科學家 Alain Kaufmann 撰寫的免費電子書《使用 Python 的機器學習》,網址為 http://aisciences.net/free-books/**