Hands On Machine Learning with Python
暫譯: 實戰Python機器學習
John Anderson
- 出版商: W. W. Norton
- 出版日期: 2018-08-06
- 售價: $820
- 貴賓價: 9.5 折 $779
- 語言: 英文
- 頁數: 222
- 裝訂: Paperback
- ISBN: 1724731963
- ISBN-13: 9781724731968
-
相關分類:
Python、程式語言、Machine Learning
無法訂購
商品描述
***** BUY NOW (will soon return to 25.89 $) ***** MONEY BACK GUARANTEE BY AMAZON (See Below FAQ) *****
>****** Free eBook for customers who purchase the print book from Amazon ******
Are you thinking of learning more about Machine Learning using Python? (For beginners)
This book is for you. It would seek to explain common terms and algorithms in an intuitive way. The authors used a progressive approach whereby we start out slowly and improve on the complexity of our solutions. This book and the accompanying examples, you would be well suited to tackle problems which pique your interests using machine learning.From AI Sciences Publisher
Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses. To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach which would lead to better mental representations.Target Users
The book designed for a variety of target audiences. The most suitable users would include:- Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field.
- Software developers and engineers with a strong programming background but seeking to break into the field of machine learning.
- Seasoned professionals in the field of artificial intelligence and machine learning who desire a bird’s eye view of current techniques and approaches.
What’s Inside This Book?
<- Overview of Python Programming Language
- Statistics
- Probability
- The Data Science Process
- Machine Learning
- Supervised Learning Algorithms
- Unsupervised Learning Algorithms
- Semi-supervised Learning Algorithms
- Reinforcement Learning Algorithms
- Overfitting and Underfitting
- Python Data Science Tools
- Jupyter Notebook
- Numerical Python (Numpy)
- Pandas
- Scientific Python (Scipy)
- Matplotlib
- Scikit-Learn
- K-Nearest Neighbors
- Naive Bayes
- Simple and Multiple Linear Regression
- Logistic Regression
- Generalized Linear Models
- Decision Trees and Random Forest
- Neural Networks
- Perceptrons
- Backpropagation
- Clustering
- K-means with Scikit-Learn
- Bottom-up Hierarchical Clustering
- K-means Clustering
- Network Analysis
- Betweenness centrality
- Eigenvector Centrality
- Recommender Systems
- Multi-Class Classification
- Popular Classification Algorithms
- Support Vector Machine
- Deep Learning using TensorFlow
- Deep Learning Case Studies
Frequently Asked Questions
Q: Is this book for me and do I need programming experience? A: If you want to smash Machine Learning from scratch, this book is for you. If you already wrote a few lines of code and recognize basic programming statements, you’ll be OK. Q: Does this book include everything I need to become a Machine Learning expert? A: Unfortunately, no. This book is designed for readers taking their first steps in Machine Learning and further learning will be required beyond this book to master all aspects of Machine Learning. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at contact@aisciences.net.商品描述(中文翻譯)
***** 現在購買(將很快回到 25.89 美元) ***** 亞馬遜提供退款保證(請參見下方常見問題) *****
****** 購買印刷書籍的客戶可獲得免費電子書 ******
您是否考慮過使用 Python 學習更多有關機器學習的知識?(適合初學者)
這本書就是為您而寫。它旨在以直觀的方式解釋常見術語和算法。作者採用漸進式的方法,從簡單開始,逐步提高解決方案的複雜性。通過這本書及其附帶的範例,您將能夠應對使用機器學習解決您感興趣的問題。
來自 AI Sciences 出版社
我們的書籍可能是初學者的最佳選擇;這是一本逐步指南,適合任何想從零開始學習人工智慧和數據科學的人。它將幫助您建立堅實的基礎,並學習其他高級課程。為了充分理解將要涵蓋的概念,建議讀者採取實踐的方法,這將有助於更好的心理表徵。
目標用戶
這本書是為各種目標受眾設計的。最合適的用戶包括:
- 對算法如何得出預測感到好奇但對該領域沒有先前知識的任何人。
- 擁有強大編程背景的軟體開發人員和工程師,但希望進入機器學習領域。
- 在人工智慧和機器學習領域的資深專業人士,渴望了解當前技術和方法的全貌。
這本書裡面有什麼?
- Python 程式語言概述
- 統計學
- 機率
- 數據科學過程
- 機器學習
- 監督式學習算法
- 非監督式學習算法
- 半監督式學習算法
- 強化學習算法
- 過擬合與欠擬合
- Python 數據科學工具
- Jupyter Notebook
- 數值 Python (Numpy)
- Pandas
- 科學 Python (Scipy)
- Matplotlib
- Scikit-Learn
- K-最近鄰
- 朴素貝葉斯
- 簡單與多重線性回歸
- 邏輯回歸
- 廣義線性模型
- 決策樹與隨機森林
- 神經網絡
- 感知器
- 反向傳播
- 聚類
- 使用 Scikit-Learn 的 K-means
- 自下而上的層次聚類
- K-means 聚類
- 網絡分析
- 中介中心性
- 特徵向量中心性
- 推薦系統
- 多類別分類
- 常見分類算法
- 支持向量機
- 使用 TensorFlow 的深度學習
- 深度學習案例研究
常見問題
問:這本書適合我嗎?我需要編程經驗嗎?
答:如果您想從零開始學習機器學習,這本書適合您。如果您已經寫過幾行代碼並認識基本的編程語句,您就可以了。
問:這本書是否包含我成為機器學習專家的所有所需內容?
答:不幸的是,沒有。這本書是為初學者設計的,進一步的學習將在此書之外需要以掌握機器學習的所有方面。
問:如果這本書不適合我,我可以退款嗎?
答:可以,如果您不滿意,亞馬遜會為您退款,欲了解有關亞馬遜退款服務的更多信息,請訪問亞馬遜幫助平台。如果您發送電子郵件至 contact@aisciences.net,我們也很樂意幫助您。