Mastering Machine Learning with R Second Edition
暫譯: 精通 R 語言的機器學習(第二版)
Cory Lesmeister
- 出版商: Packt Publishing
- 出版日期: 2017-04-24
- 售價: $2,220
- 貴賓價: 9.5 折 $2,109
- 語言: 英文
- 頁數: 420
- 裝訂: Paperback
- ISBN: 1787287475
- ISBN-13: 9781787287471
-
相關分類:
R 語言、Machine Learning
-
相關翻譯:
精通機器學習 基於R 第2版 (簡中版)
商品描述
Key Features
- Understand and apply machine learning methods using an extensive set of R packages such as XGBOOST
- Understand the benefits and potential pitfalls of using machine learning methods such as Multi-Class Classification and Unsupervised Learning
- Implement advanced concepts in machine learning with this example-rich guide
Book Description
This book will teach you advanced techniques in machine learning with the latest code in R 3.3.2. You will delve into statistical learning theory and supervised learning; design efficient algorithms; learn about creating Recommendation Engines; use multi-class classification and deep learning; and more.
You will explore, in depth, topics such as data mining, classification, clustering, regression, predictive modeling, anomaly detection, boosted trees with XGBOOST, and more. More than just knowing the outcome, you'll understand how these concepts work and what they do.
With a slow learning curve on topics such as neural networks, you will explore deep learning, and more. By the end of this book, you will be able to perform machine learning with R in the cloud using AWS in various scenarios with different datasets.
What you will learn
- Gain deep insights into the application of machine learning tools in the industry
- Manipulate data in R efficiently to prepare it for analysis
- Master the skill of recognizing techniques for effective visualization of data
- Understand why and how to create test and training data sets for analysis
- Master fundamental learning methods such as linear and logistic regression
- Comprehend advanced learning methods such as support vector
商品描述(中文翻譯)
**主要特點**
- 理解並應用機器學習方法,使用一系列廣泛的 R 套件,如 XGBOOST
- 理解使用機器學習方法(如多類別分類和無監督學習)的好處和潛在陷阱
- 通過這本充滿範例的指南實現機器學習中的高級概念
**書籍描述**
這本書將教你使用 R 3.3.2 中的最新代碼進行機器學習的高級技術。你將深入探討統計學習理論和監督學習;設計高效的算法;學習如何創建推薦引擎;使用多類別分類和深度學習;等等。
你將深入探索數據挖掘、分類、聚類、回歸、預測建模、異常檢測、使用 XGBOOST 的增強樹等主題。不僅僅是了解結果,你還將理解這些概念如何運作以及它們的作用。
在神經網絡等主題上有著緩慢的學習曲線,你將探索深度學習等內容。在這本書結束時,你將能夠在雲端使用 AWS 進行機器學習,並在不同的場景中使用不同的數據集。
**你將學到的內容**
- 深入了解機器學習工具在行業中的應用
- 高效地在 R 中操作數據,以準備進行分析
- 掌握有效可視化數據的技術識別技能
- 理解為何以及如何創建測試和訓練數據集以進行分析
- 掌握基本學習方法,如線性回歸和邏輯回歸
- 理解高級學習方法,如支持向量機