Data Science Algorithms in a Week
暫譯: 一週掌握資料科學演算法

David Natingga

  • Data Science Algorithms in a Week-preview-1
  • Data Science Algorithms in a Week-preview-2
  • Data Science Algorithms in a Week-preview-3
  • Data Science Algorithms in a Week-preview-4
  • Data Science Algorithms in a Week-preview-5
  • Data Science Algorithms in a Week-preview-6
  • Data Science Algorithms in a Week-preview-7
  • Data Science Algorithms in a Week-preview-8
  • Data Science Algorithms in a Week-preview-9
  • Data Science Algorithms in a Week-preview-10
  • Data Science Algorithms in a Week-preview-11
  • Data Science Algorithms in a Week-preview-12
  • Data Science Algorithms in a Week-preview-13
  • Data Science Algorithms in a Week-preview-14
  • Data Science Algorithms in a Week-preview-15
  • Data Science Algorithms in a Week-preview-16
  • Data Science Algorithms in a Week-preview-17
  • Data Science Algorithms in a Week-preview-18
  • Data Science Algorithms in a Week-preview-19
  • Data Science Algorithms in a Week-preview-20
  • Data Science Algorithms in a Week-preview-21
  • Data Science Algorithms in a Week-preview-22
  • Data Science Algorithms in a Week-preview-23
  • Data Science Algorithms in a Week-preview-24
  • Data Science Algorithms in a Week-preview-25
  • Data Science Algorithms in a Week-preview-26
  • Data Science Algorithms in a Week-preview-27
Data Science Algorithms in a Week-preview-1

買這商品的人也買了...

商品描述

Key Features

  • Get to know seven algorithms for your data science needs in this concise, insightful guide
  • Ensure you're confident in the basics by learning when and where to use various data science algorithms
  • Learn to use machine learning algorithms in a period of just 7 days

Book Description

Machine learning applications are highly automated and self-modifying, and they continue to improve over time with minimal human intervention as they learn with more data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed that solve these problems perfectly. Data science helps you gain new knowledge from existing data through algorithmic and statistical analysis.

This book will address the problems related to accurate and efficient data classification and prediction. Over the course of 7 days, you will be introduced to seven algorithms, along with exercises that will help you learn different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. You will then find out how to predict data based on the existing trends in your datasets.

This book covers algorithms such as: k-Nearest Neighbors, Naive Bayes, Decision Trees, Random Forest, k-Means, Regression, and Time-series. On completion of the book, you will understand which machine learning algorithm to pick for clustering, classification, or regression and which is best suited for your problem.

What you will learn

  • Find out how to classify using Naive Bayes, Decision Trees, and Random Forest to achieve accuracy to solve complex problems
  • Identify a data science problem correctly and devise an appropriate

商品描述(中文翻譯)

#### 主要特點

- 在這本簡明而深刻的指南中,了解七種適用於數據科學的算法
- 通過學習何時以及如何使用各種數據科學算法,確保您對基礎知識充滿信心
- 在短短7天內學會使用機器學習算法

#### 書籍描述

機器學習應用高度自動化且自我修改,隨著學習更多數據,它們隨著時間的推移不斷改進,並且對人類干預的需求最小。為了解決各種現實世界數據問題的複雜性,已開發出專門的機器學習算法,能夠完美地解決這些問題。數據科學幫助您通過算法和統計分析從現有數據中獲取新知識。

本書將解決與準確和高效的數據分類和預測相關的問題。在7天的時間裡,您將接觸到七種算法,並通過練習幫助您學習機器學習的不同方面。您將學會如何對數據進行預聚類,以優化和分類大型數據集。然後,您將了解如何根據數據集中的現有趨勢來預測數據。

本書涵蓋的算法包括:k-最近鄰(k-Nearest Neighbors)、朴素貝葉斯(Naive Bayes)、決策樹(Decision Trees)、隨機森林(Random Forest)、k-均值(k-Means)、回歸(Regression)和時間序列(Time-series)。完成本書後,您將了解在聚類、分類或回歸中應選擇哪種機器學習算法,以及哪一種最適合您的問題。

#### 您將學到什麼

- 瞭解如何使用朴素貝葉斯、決策樹和隨機森林進行分類,以實現準確性來解決複雜問題
- 正確識別數據科學問題並制定適當的解決方案