Python Machine Learning Cookbook (Paperback)
暫譯: Python 機器學習食譜 (平裝本)

Prateek Joshi

買這商品的人也買了...

相關主題

商品描述

100 recipes that teach you how to perform various machine learning tasks in the real world

About This Book

  • Understand which algorithms to use in a given context with the help of this exciting recipe-based guide
  • Learn about perceptrons and see how they are used to build neural networks
  • Stuck while making sense of images, text, speech, and real estate? This guide will come to your rescue, showing you how to perform machine learning for each one of these using various techniques

Who This Book Is For

This book is for Python programmers who are looking to use machine-learning algorithms to create real-world applications. This book is friendly to Python beginners, but familiarity with Python programming would certainly be useful to play around with the code.

What You Will Learn

  • Explore classification algorithms and apply them to the income bracket estimation problem
  • Use predictive modeling and apply it to real-world problems
  • Understand how to perform market segmentation using unsupervised learning
  • Explore data visualization techniques to interact with your data in diverse ways
  • Find out how to build a recommendation engine
  • Understand how to interact with text data and build models to analyze it
  • Work with speech data and recognize spoken words using Hidden Markov Models
  • Analyze stock market data using Conditional Random Fields
  • Work with image data and build systems for image recognition and biometric face recognition
  • Grasp how to use deep neural networks to build an optical character recognition system

In Detail

Machine learning is becoming increasingly pervasive in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more.

With this book, you will learn how to perform various machine learning tasks in different environments. We'll start by exploring a range of real-life scenarios where machine learning can be used, and look at various building blocks. Throughout the book, you'll use a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms.

You'll discover how to deal with various types of data and explore the differences between machine learning paradigms such as supervised and unsupervised learning. We also cover a range of regression techniques, classification algorithms, predictive modeling, data visualization techniques, recommendation engines, and more with the help of real-world examples.

Style and approach

You will explore various real-life scenarios in this book where machine learning can be used, and learn about different building blocks of machine learning using independent recipes in the book.

商品描述(中文翻譯)

**100 個食譜教你如何在現實世界中執行各種機器學習任務**

## 本書介紹

- 在這本令人興奮的食譜指南的幫助下,了解在特定情境中應該使用哪些演算法
- 學習感知器並了解它們如何用於構建神經網絡
- 在理解圖像、文本、語音和房地產時遇到困難?這本指南將幫助你,展示如何使用各種技術對每一種情況進行機器學習

## 本書適合誰

這本書適合希望使用機器學習演算法創建現實應用的 Python 程式設計師。這本書對 Python 初學者友好,但熟悉 Python 程式設計將對於操作代碼非常有幫助。

## 你將學到什麼

- 探索分類演算法並將其應用於收入範疇估算問題
- 使用預測建模並將其應用於現實問題
- 了解如何使用無監督學習進行市場細分
- 探索數據可視化技術,以多種方式與數據互動
- 瞭解如何構建推薦引擎
- 了解如何與文本數據互動並構建模型進行分析
- 處理語音數據並使用隱馬爾可夫模型識別口語單詞
- 使用條件隨機場分析股市數據
- 處理圖像數據並構建圖像識別和生物識別面部識別系統
- 掌握如何使用深度神經網絡構建光學字符識別系統

## 詳細內容

機器學習在現代數據驅動的世界中變得越來越普遍。它在許多領域中被廣泛使用,例如搜索引擎、機器人技術、自駕車等。

通過這本書,你將學習如何在不同環境中執行各種機器學習任務。我們將從探索機器學習可以使用的一系列現實場景開始,並查看各種構建模塊。在整本書中,你將使用各種機器學習演算法來解決現實問題,並使用 Python 實現這些演算法。

你將發現如何處理各種類型的數據,並探索監督學習和無監督學習等機器學習範式之間的差異。我們還將通過現實範例涵蓋一系列回歸技術、分類演算法、預測建模、數據可視化技術、推薦引擎等。

## 風格與方法

在這本書中,你將探索各種可以使用機器學習的現實場景,並通過書中的獨立食譜學習機器學習的不同構建模塊。