Mastering Java Machine Learning
Dr. Uday Kamath, Krishna Choppella
- 出版商: Packt Publishing
- 出版日期: 2017-06-30
- 售價: $2,380
- 貴賓價: 9.5 折 $2,261
- 語言: 英文
- 頁數: 556
- 裝訂: Paperback
- ISBN: 1785880519
- ISBN-13: 9781785880513
-
相關分類:
Java 程式語言、Machine Learning
-
相關翻譯:
Java 機器學習 (Mastering Java Machine Learning) (簡中版)
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$480$379 -
$880$695 -
$990Java: The Complete Reference, 9/e (Paperback)
-
$550$468 -
$420$357 -
$950$950 -
$800Java Deep Learning Essentials (Paperback)
-
$650$553 -
$580$458 -
$650$553 -
$500$395 -
$2,170$2,062 -
$1,320Mastering Java for Data Science
-
$450$356 -
$2,070$1,967 -
$390$332 -
$2,170$2,062 -
$1,320Mastering Apache Spark 2.x - Second Edition
-
$2,170$2,062 -
$580$458 -
$490$245 -
$480$408 -
$403深度學習與計算機視覺 : 算法原理、框架應用與代碼實現 (Deep Learning & Computer Vision:Algorithms and Examples)
-
$430$387 -
$780$616
相關主題
商品描述
Become an advanced practitioner with this progressive set of master classes on application-oriented machine learning
About This Book
- Comprehensive coverage of key topics in machine learning with an emphasis on both the theoretical and practical aspects
- More than 15 open source Java tools in a wide range of techniques, with code and practical usage.
- More than 10 real-world case studies in machine learning highlighting techniques ranging from data ingestion up to analyzing the results of experiments, all preparing the user for the practical, real-world use of tools and data analysis.
Who This Book Is For
This book will appeal to anyone with a serious interest in topics in Data Science or those already working in related areas: ideally, intermediate-level data analysts and data scientists with experience in Java. Preferably, you will have experience with the fundamentals of machine learning and now have a desire to explore the area further, are up to grappling with the mathematical complexities of its algorithms, and you wish to learn the complete ins and outs of practical machine learning.
What You Will Learn
- Master key Java machine learning libraries, and what kind of problem each can solve, with theory and practical guidance.
- Explore powerful techniques in each major category of machine learning such as classification, clustering, anomaly detection, graph modeling, and text mining.
- Apply machine learning to real-world data with methodologies, processes, applications, and analysis.
- Techniques and experiments developed around the latest specializations in machine learning, such as deep learning, stream data mining, and active and semi-supervised learning.
- Build high-performing, real-time, adaptive predictive models for batch- and stream-based big data learning using the latest tools and methodologies.
- Get a deeper understanding of technologies leading towards a more powerful AI applicable in various domains such as Security, Financial Crime, Internet of Things, social networking, and so on.
In Detail
Java is one of the main languages used by practicing data scientists; much of the Hadoop ecosystem is Java-based, and it is certainly the language that most production systems in Data Science are written in. If you know Java, Mastering Machine Learning with Java is your next step on the path to becoming an advanced practitioner in Data Science.
This book aims to introduce you to an array of advanced techniques in machine learning, including classification, clustering, anomaly detection, stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, deep learning, and big data batch and stream machine learning. Accompanying each chapter are illustrative examples and real-world case studies that show how to apply the newly learned techniques using sound methodologies and the best Java-based tools available today.
On completing this book, you will have an understanding of the tools and techniques for building powerful machine learning models to solve data science problems in just about any domain.
Style and approach
A practical guide to help you explore machine learning―and an array of Java-based tools and frameworks―with the help of practical examples and real-world use cases.
商品描述(中文翻譯)
成為一位應用導向機器學習的高級從業者,透過這一系列的進階課程。
關於本書
- 全面涵蓋機器學習的關鍵主題,強調理論和實踐兩方面。
- 提供超過15個開源Java工具,涵蓋各種技術,並附有代碼和實際用法。
- 提供超過10個機器學習的實際案例研究,涵蓋從數據輸入到實驗結果分析的各種技術,為使用者準備實際應用工具和數據分析的現實世界。
適合閱讀對象
本書適合對數據科學感興趣或已在相關領域工作的人士,特別是具有Java經驗的中級數據分析師和數據科學家。最好具有機器學習基礎知識,並希望進一步探索該領域,能夠應對其算法的數學複雜性,並希望全面了解實際應用機器學習的方方面面。
你將學到什麼
- 掌握關鍵的Java機器學習庫,以及每個庫可以解決的問題類型,並提供理論和實踐指導。
- 探索機器學習的每個主要類別中的強大技術,例如分類、聚類、異常檢測、圖模型和文本挖掘。
- 應用機器學習於現實數據,包括方法論、流程、應用和分析。
- 運用最新的機器學習專業知識和實驗,例如深度學習、流數據挖掘和主動學習、半監督學習。
- 使用最新的工具和方法,為批量和流式大數據學習構建高性能、實時、自適應的預測模型。
- 更深入地了解技術,以實現在安全、金融犯罪、物聯網、社交網絡等各個領域中更強大的人工智能。
詳細內容
Java是實踐數據科學的主要語言之一;Hadoop生態系統的大部分都是基於Java的,而且大多數數據科學的生產系統也是用Java編寫的。如果你懂Java,那麼《Java機器學習大師》將是你成為數據科學高級從業者的下一步。
本書旨在介紹一系列機器學習的高級技術,包括分類、聚類、異常檢測、流學習、主動學習、半監督學習、概率圖模型、文本挖掘、深度學習以及大數據批量和流式機器學習。每一章都附有實例和實際案例研究,展示如何使用可靠的方法和當今最佳的Java工具應用新學到的技術。
閱讀完本書後,你將了解使用工具和技術來構建強大的機器學習模型,解決幾乎任何領域的數據科學問題。
風格和方法
一本實用指南,幫助你探索機器學習,並使用實例和實際用例來介紹一系列基於Java的工具和框架。