Mastering Data Mining with Python
暫譯: 精通 Python 數據挖掘
Megan Squire
- 出版商: Packt Publishing
- 出版日期: 2016-08-26
- 售價: $2,200
- 貴賓價: 9.5 折 $2,090
- 語言: 英文
- 頁數: 268
- 裝訂: Paperback
- ISBN: 1785889958
- ISBN-13: 9781785889950
-
相關分類:
Python、程式語言、Data-mining
-
相關翻譯:
Python 數據挖掘:概念、方法與實踐 (簡中版)
相關主題
商品描述
Key Features
- Dive deeper into data mining with Python don't be complacent, sharpen your skills!
- From the most common elements of data mining to cutting-edge techniques, we've got you covered for any data-related challenge
- Become a more fluent and confident Python data-analyst, in full control of its extensive range of libraries
Book Description
Data mining is an integral part of the data science pipeline. It is the foundation of any successful data-driven strategy without it, you'll never be able to uncover truly transformative insights. Since data is vital to just about every modern organization, it is worth taking the next step to unlock even greater value and more meaningful understanding.
If you already know the fundamentals of data mining with Python, you are now ready to experiment with more interesting, advanced data analytics techniques using Python's easy-to-use interface and extensive range of libraries.
In this book, you'll go deeper into many often overlooked areas of data mining, including association rule mining, entity matching, network mining, sentiment analysis, named entity recognition, text summarization, topic modeling, and anomaly detection. For each data mining technique, we'll review the state-of-the-art and current best practices before comparing a wide variety of strategies for solving each problem. We will then implement example solutions using real-world data from the domain of software engineering, and we will spend time learning how to understand and interpret the results we get.
By the end of this book, you will have solid experience implementing some of the most interesting and relevant data mining techniques available today, and you will have achieved a greater fluency in the important field of Python data analytics.
What you will learn
- Explore techniques for finding frequent itemsets and association rules in large data sets
- Learn identification methods for entity matches across many different types of data
- Identify the basics of network mining and how to apply it to real-world data sets
- Discover methods for detecting the sentiment of text and for locating named entities in text
- Observe multiple techniques for automatically extracting summaries and generating topic models for text
- See how to use data mining to fix data anomalies and how to use machine learning to identify outliers in a data set
About the Author
Megan Squire is a professor of computing sciences at Elon University.
Her primary research interest is in collecting, cleaning, and analyzing data about how free and open source software is made. She is one of the leaders of the FLOSSmole.org, FLOSSdata.org, and FLOSSpapers.org projects.
Table of Contents
- Expanding Your Data Mining Toolbox
- Association Rule Mining
- Entity Matching
- Network Analysis
- Sentiment Analysis in Text
- Named Entity Recognition in Text
- Automatic Text Summarization
- Topic Modeling in Text
- Mining for Data Anomalies
商品描述(中文翻譯)
#### 主要特點
- 深入探索使用 Python 的資料探勘,不要自滿,提升你的技能!
- 從最常見的資料探勘元素到尖端技術,我們為你提供任何與資料相關的挑戰解決方案
- 成為更流利且自信的 Python 資料分析師,完全掌握其廣泛的函式庫
#### 書籍描述
資料探勘是資料科學流程中不可或缺的一部分。它是任何成功的資料驅動策略的基礎,沒有它,你將無法發掘真正具有變革性的見解。由於資料對幾乎每個現代組織至關重要,因此值得邁出下一步,以解鎖更大的價值和更有意義的理解。
如果你已經了解使用 Python 的資料探勘基礎,現在你已經準備好使用 Python 的易用介面和廣泛的函式庫來實驗更有趣的進階資料分析技術。
在本書中,你將深入探討許多常被忽視的資料探勘領域,包括關聯規則探勘、實體匹配、網路探勘、情感分析、命名實體識別、文本摘要、主題建模和異常檢測。對於每種資料探勘技術,我們將回顧最先進的技術和當前最佳實踐,然後比較各種解決每個問題的策略。我們將使用來自軟體工程領域的真實世界資料實作範例解決方案,並花時間學習如何理解和解釋我們所獲得的結果。
在本書結束時,你將擁有實作一些當今最有趣和相關的資料探勘技術的堅實經驗,並在 Python 資料分析這一重要領域中達到更高的流利度。
#### 你將學到什麼
- 探索在大型資料集尋找頻繁項集和關聯規則的技術
- 學習在不同類型資料中識別實體匹配的方法
- 確認網路探勘的基本概念及其在真實世界資料集中的應用
- 發現檢測文本情感和定位文本中命名實體的方法
- 觀察自動提取摘要和生成文本主題模型的多種技術
- 了解如何使用資料探勘修正資料異常,以及如何使用機器學習識別資料集中的異常值
#### 關於作者
**Megan Squire** 是伊隆大學計算科學的教授。
她的主要研究興趣在於收集、清理和分析有關自由和開源軟體製作的資料。她是 FLOSSmole.org、FLOSSdata.org 和 FLOSSpapers.org 項目的領導者之一。
#### 目錄
1. 擴展你的資料探勘工具箱
2. 關聯規則探勘
3. 實體匹配
4. 網路分析
5. 文本中的情感分析
6. 文本中的命名實體識別
7. 自動文本摘要
8. 文本中的主題建模
9. 資料異常探勘