Java Deep Learning Essentials (Paperback)
Yusuke Sugomori
- 出版商: Packt Publishing
- 出版日期: 2016-05-31
- 定價: $1,600
- 售價: 5.0 折 $800
- 語言: 英文
- 頁數: 254
- 裝訂: Paperback
- ISBN: 1785282190
- ISBN-13: 9781785282195
-
相關分類:
Java 程式語言、DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$480$379 -
$880$695 -
$790$774 -
$990Java: The Complete Reference, 9/e (Paperback)
-
$550$468 -
$202深度學習:方法及應用
-
$960R Deep Learning Essentials (Paperback)
-
$420$357 -
$950$950 -
$650$553 -
$580$458 -
$650$553 -
$500$395 -
$2,180$2,071 -
$1,320Mastering Java for Data Science
-
$590$460 -
$450$356 -
$2,080$1,976 -
$2,180$2,071 -
$2,380$2,261 -
$1,320Mastering Apache Spark 2.x - Second Edition
-
$2,180$2,071 -
$403深度學習與計算機視覺 : 算法原理、框架應用與代碼實現 (Deep Learning & Computer Vision:Algorithms and Examples)
-
$430$387 -
$780$616
相關主題
商品描述
Dive into the future of data science and learn how to build the sophisticated algorithms that are fundamental to deep learning and AI with Java
About This Book
- Go beyond the theory and put Deep Learning into practice with Java
- Find out how to build a range of Deep Learning algorithms using a range of leading frameworks including DL4J, Theano and Caffe
- Whether you're a data scientist or Java developer, dive in and find out how to tackle Deep Learning
Who This Book Is For
This book is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It would also be good for machine learning users who intend to leverage deep learning in their projects, working within a big data environment.
What You Will Learn
- Get a practical deep dive into machine learning and deep learning algorithms
- Implement machine learning algorithms related to deep learning
- Explore neural networks using some of the most popular Deep Learning frameworks
- Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms
- Discover more deep learning algorithms with Dropout and Convolutional Neural Networks
- Gain an insight into the deep learning library DL4J and its practical uses
- Get to know device strategies to use deep learning algorithms and libraries in the real world
- Explore deep learning further with Theano and Caffe
In Detail
AI and Deep Learning are transforming the way we understand software, making computers more intelligent than we could even imagine just a decade ago. Deep Learning algorithms are being used across a broad range of industries – as the fundamental driver of AI, being able to tackle Deep Learning is going to a vital and valuable skill not only within the tech world but also for the wider global economy that depends upon knowledge and insight for growth and success. It's something that's moving beyond the realm of data science – if you're a Java developer, this book gives you a great opportunity to expand your skillset.
Starting with an introduction to basic machine learning algorithms, to give you a solid foundation, Deep Learning with Java takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. Once you've got to grips with the fundamental mathematical principles, you'll start exploring neural networks and identify how to tackle challenges in large networks using advanced algorithms. You will learn how to use the DL4J library and apply Deep Learning to a range of real-world use cases. Featuring further guidance and insights to help you solve challenging problems in image processing, speech recognition, language modeling, this book will make you rethink what you can do with Java, showing you how to use it for truly cutting-edge predictive insights. As a bonus, you'll also be able to get to grips with Theano and Caffe, two of the most important tools in Deep Learning today.
By the end of the book, you'll be ready to tackle Deep Learning with Java. Wherever you've come from – whether you're a data scientist or Java developer – you will become a part of the Deep Learning revolution!
Style and approach
This is a step-by-step, practical tutorial that discusses key concepts. This book offers a hands-on approach to key algorithms to help you develop a greater understanding of deep learning. It is packed with implementations from scratch, with detailed explanation that make the concepts easy to understand and follow.
商品描述(中文翻譯)
深入探索數據科學的未來,並學習如何使用Java構建深度學習和人工智能中的基礎算法。
關於本書:
- 超越理論,用Java實踐深度學習
- 了解如何使用DL4J、Theano和Caffe等領先框架構建各種深度學習算法
- 無論您是數據科學家還是Java開發人員,都可以深入研究並學習如何應對深度學習
適合閱讀對象:
本書適合數據科學家和Java開發人員,他們希望深入研究令人興奮的深度學習世界。對於打算在大數據環境中利用深度學習的機器學習用戶來說,這本書也很有價值。
學到什麼:
- 深入了解機器學習和深度學習算法
- 實現與深度學習相關的機器學習算法
- 使用一些最流行的深度學習框架探索神經網絡
- 深入研究深度置信網絡和堆疊去噪自編碼器算法
- 了解Dropout和卷積神經網絡等更多深度學習算法
- 瞭解深度學習庫DL4J及其實際應用
- 了解在現實世界中使用深度學習算法和庫的設備策略
- 進一步探索Theano和Caffe等深度學習工具
詳細內容:
人工智能和深度學習正在改變我們對軟件的理解方式,使計算機比十年前我們所能想像的更智能。深度學習算法正在廣泛應用於各個行業,作為人工智能的基礎驅動力,能夠應對深度學習將成為一項重要且有價值的技能,不僅在技術界,而且在依賴知識和洞察力實現增長和成功的全球經濟中。這已經超越了數據科學的範疇,如果您是Java開發人員,這本書將為您提供一個擴展技能的絕佳機會。
從介紹基本機器學習算法開始,為您打下堅實的基礎,本書將帶您深入探索這個重要的領域,獲得令人驚嘆的預測洞察力和卓越的機器智能。一旦您掌握了基本的數學原理,您將開始探索神經網絡,並學習如何使用先進的算法解決大型網絡中的挑戰。您將學習如何使用DL4J庫並將深度學習應用於各種實際用例。本書還提供進一步的指導和見解,幫助您解決圖像處理、語音識別、語言建模等具有挑戰性的問題,讓您重新思考使用Java可以做些什麼,並向您展示如何使用它進行真正尖端的預測洞察力。作為額外的福利,您還將能夠熟悉Theano和Caffe,這是當今深度學習中最重要的兩個工具之一。
通過閱讀本書,您將準備好使用Java進行深度學習。無論您來自哪個領域-無論是數據科學家還是Java開發人員-您都將成為深度學習革命的一部分!
風格和方法:
這是一本逐步實踐的實用教程,討論了關鍵概念。本書提供了一種實踐的方法來學習關鍵算法,幫助您更好地理解深度學習。書中包含了從頭開始的實現,並提供了詳細的解釋,使概念易於理解和遵循。