Deep Learning: A Practitioner's Approach (Paperback)
暫譯: 深度學習:實務者的實踐方法 (平裝本)

Josh Patterson, Adam Gibson

買這商品的人也買了...

商品描述

Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learning—especially deep neural networks—make a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks.

Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you’ll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.

  • Dive into machine learning concepts in general, as well as deep learning in particular
  • Understand how deep networks evolved from neural network fundamentals
  • Explore the major deep network architectures, including Convolutional and Recurrent
  • Learn how to map specific deep networks to the right problem
  • Walk through the fundamentals of tuning general neural networks and specific deep network architectures
  • Use vectorization techniques for different data types with DataVec, DL4J’s workflow tool
  • Learn how to use DL4J natively on Spark and Hadoop

商品描述(中文翻譯)

雖然對機器學習的興趣已達到高峰,但過高的期望往往會在專案尚未取得進展之前就使其失敗。機器學習,特別是深度神經網絡,如何能在您的組織中真正發揮作用?這本實用指南不僅提供了該主題上最實用的信息,還幫助您開始構建高效的深度學習網絡。

作者 Adam Gibson 和 Josh Patterson 在介紹他們的開源 Deeplearning4j (DL4J) 庫以開發生產級工作流程之前,首先提供了深度學習的理論。通過真實世界的範例,您將學習訓練深度網絡架構和在 Spark 和 Hadoop 上運行深度學習工作流程的方法和策略。

- 深入了解機器學習的概念,特別是深度學習
- 理解深度網絡如何從神經網絡的基本原理演變而來
- 探索主要的深度網絡架構,包括卷積網絡和遞歸網絡
- 學習如何將特定的深度網絡映射到正確的問題上
- 了解調整一般神經網絡和特定深度網絡架構的基本原理
- 使用 DataVec(DL4J 的工作流程工具)對不同數據類型進行向量化技術
- 學習如何在 Spark 和 Hadoop 上原生使用 DL4J