Bayesian Reasoning and Machine Learning (DHL)
暫譯: 貝葉斯推理與機器學習 (DHL)
David Barber
- 出版商: Cambridge
- 出版日期: 2012-02-02
- 售價: $3,500
- 貴賓價: 9.5 折 $3,325
- 語言: 英文
- 頁數: 735
- 裝訂: Hardcover
- ISBN: 0521518148
- ISBN-13: 9780521518147
-
相關分類:
Machine Learning、機率統計學 Probability-and-statistics
-
相關翻譯:
貝葉斯推理與機器學習 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$3,860$3,667 -
$990$891 -
$1,362Fundamentals of Data Structures in C, 2/e (Paperback)
-
$620$527 -
$738Digital Image Processing, 3/e (IE-Paperback)
-
$4,260$4,047 -
$780$616 -
$520$411 -
$1,460$1,431 -
$480$379 -
$580$458 -
$2,660C++ Primer, 5/e (Paperback)
-
$5,140$4,883 -
$1,490Contemporary Artificial Intelligence (Hardcover)
-
$680$578 -
$940$700 -
$3,500$3,325 -
$520$468 -
$1,050$998 -
$980$774 -
$1,830Deep Learning: A Practitioner's Approach (Paperback)
-
$3,600$3,420 -
$1,750Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Hardcover)
-
$2,600$2,470 -
$480$432
商品描述
Machine learning methods extract value from vast data sets quickly and with modest resources. They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.
商品描述(中文翻譯)
機器學習方法能夠快速且以適度的資源從龐大的數據集中提取價值。這些方法已成為各種工業應用中的基本工具,包括搜尋引擎、DNA 序列分析、股市分析和機器人運動,其使用正在迅速擴展。熟悉這些方法的人有許多有吸引力的工作選擇。本書是一部實作導向的教材,為具有基本數學背景的計算機科學學生開啟這些機會。它專為最後一年本科生和具有有限線性代數及微積分背景的碩士生設計。內容全面且連貫,涵蓋從基本推理到高級技術的所有內容,並以圖形模型的框架進行發展。學生不僅學習一系列技術,還培養分析和解決問題的能力,為進入現實世界做好準備。每一章都包含大量的範例和練習,既有計算機基礎的也有理論性的。學生和教師的資源,包括 MATLAB 工具箱,均可在線獲得。