R Deep Learning Essentials (Paperback)
暫譯: R 深度學習精要 (平裝本)
Dr. Joshua F. Wiley
- 出版商: Packt Publishing
- 出版日期: 2016-03-29
- 定價: $1,600
- 售價: 6.0 折 $960
- 語言: 英文
- 頁數: 170
- 裝訂: Paperback
- ISBN: 1785280589
- ISBN-13: 9781785280580
-
相關分類:
R 語言、DeepLearning
-
相關翻譯:
深度學習精要 基於R語言 (簡中版)
-
其他版本:
R Deep Learning Essentials - Second Edition: A step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet
買這商品的人也買了...
-
$299Python Power!: The Comprehensive Guide
-
$580$452 -
$100$95 -
$400$316 -
$560$442 -
$6,380$6,061 -
$4,260$4,047 -
$4,090$3,886 -
$2,420$2,299 -
$11,930$11,334 -
$800Java Deep Learning Essentials (Paperback)
-
$4,630$4,399 -
$560$476 -
$720$562 -
$403深度學習 : Caffe 之經典模型詳解與實戰
-
$590$502 -
$520$411 -
$590$460 -
$500$395 -
$360$270 -
$580$458 -
$780$616 -
$320$253 -
$520$411 -
$3,383Translational Bioinformatics and Systems Biology Methods for Personalized Medicine (Paperback)
商品描述
Key Features
- Harness the ability to build algorithms for unsupervised data using deep learning concepts with R
- Master the common problems faced such as overfitting of data, anomalous datasets, image recognition, and performance tuning while building the models
- Build models relating to neural networks, prediction and deep prediction
Book Description
Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data by using model architectures. With the superb memory management and the full integration with multi-node big data platforms, the H2O engine has become more and more popular among data scientists in the field of deep learning.
This book will introduce you to the deep learning package H2O with R and help you understand the concepts of deep learning. We will start by setting up important deep learning packages available in R and then move towards building models related to neural networks, prediction, and deep prediction, all of this with the help of real-life examples.
After installing the H2O package, you will learn about prediction algorithms. Moving ahead, concepts such as overfitting data, anomalous data, and deep prediction models are explained. Finally, the book will cover concepts relating to tuning and optimizing models.
What you will learn
- Set up the R package H2O to train deep learning models
- Understand the core concepts behind deep learning models
- Use Autoencoders to identify anomalous data or outliers
- Predict or classify data automatically using deep neural networks
- Build generalizable models using regularization to avoid overfitting the training data
About the Author
Dr. Joshua F. Wiley is a lecturer at Monash University and a senior partner at Elkhart Group Limited, a statistical consultancy. He earned his PhD from the University of California, Los Angeles. His research focuses on using advanced quantitative methods to understand the complex interplays of psychological, social, and physiological processes in relation to psychological and physical health. In statistics and data science, Joshua focuses on biostatistics and is interested in reproducible research and graphical displays of data and statistical models. Through consulting at Elkhart Group Limited and his former work at the UCLA Statistical Consulting Group, Joshua has helped a wide array of clients, ranging from experienced researchers to biotechnology companies. He develops or codevelops a number of R packages including varian, a package to conduct Bayesian scale-location structural equation models, and MplusAutomation, a popular package that links R to the commercial Mplus software.
Table of Contents
- Getting Started with Deep Learning
- Training a Prediction Model
- Preventing Overfitting
- Identifying Anomalous Data
- Training Deep Prediction Models
- Tuning and Optimizing Models
- Bibliography
商品描述(中文翻譯)
主要特點
- 利用深度學習概念,使用 R 建立無監督數據的演算法
- 掌握在建立模型時常見的問題,例如數據過擬合、異常數據集、圖像識別和性能調整
- 建立與神經網絡、預測和深度預測相關的模型
書籍描述
深度學習是機器學習的一個分支,基於一組演算法,試圖通過使用模型架構來對數據中的高層次抽象進行建模。隨著卓越的記憶體管理和與多節點大數據平台的全面整合,H2O 引擎在深度學習領域的數據科學家中變得越來越受歡迎。
本書將介紹如何使用 R 的深度學習套件 H2O,並幫助您理解深度學習的概念。我們將從設置 R 中可用的重要深度學習套件開始,然後轉向建立與神經網絡、預測和深度預測相關的模型,所有這些都將通過實際案例來進行。
在安裝 H2O 套件後,您將學習預測演算法。接下來,將解釋過擬合數據、異常數據和深度預測模型等概念。最後,本書將涵蓋與調整和優化模型相關的概念。
您將學到什麼
- 設置 R 套件 H2O 以訓練深度學習模型
- 理解深度學習模型背後的核心概念
- 使用自編碼器識別異常數據或離群值
- 使用深度神經網絡自動預測或分類數據
- 使用正則化建立可泛化的模型,以避免對訓練數據的過擬合
關於作者
Dr. Joshua F. Wiley 是莫納什大學的講師,也是 Elkhart Group Limited 的高級合夥人,該公司是一家統計諮詢公司。他在加州大學洛杉磯分校獲得博士學位。他的研究專注於使用先進的定量方法來理解心理、社會和生理過程在心理和身體健康方面的複雜相互作用。在統計和數據科學領域,Joshua 專注於生物統計學,並對可重複研究和數據及統計模型的圖形顯示感興趣。通過在 Elkhart Group Limited 的諮詢工作以及他在 UCLA 統計諮詢小組的前期工作,Joshua 幫助了各種客戶,從經驗豐富的研究人員到生物技術公司。他開發或共同開發了多個 R 套件,包括 varian,一個用於進行貝葉斯尺度-位置結構方程模型的套件,以及 MplusAutomation,一個將 R 與商業 Mplus 軟體連接的流行套件。
目錄
- 深度學習入門
- 訓練預測模型
- 防止過擬合
- 識別異常數據
- 訓練深度預測模型
- 調整和優化模型
- 參考文獻