Mastering Predictive Analytics with R, Second Edition
暫譯: 精通 R 的預測分析(第二版)
James D. Miller, Rui Miguel Forte
- 出版商: Packt Publishing
- 出版日期: 2017-08-18
- 售價: $2,220
- 貴賓價: 9.5 折 $2,109
- 語言: 英文
- 頁數: 448
- 裝訂: Paperback
- ISBN: 1787121399
- ISBN-13: 9781787121393
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Master the craft of predictive modeling in R by developing strategy, intuition, and a solid foundation in essential concepts
About This Book
- Grasping the major methods of predictive modeling and moving beyond black box thinking to a deeper level of understanding
- Leveraging the flexibility and modularity of R to experiment with a range of different techniques and data types
- Packed with practical advice and tips explaining important concepts and best practices to help you understand quickly and easily
Who This Book Is For
Although budding data scientists, predictive modelers, or quantitative analysts with only basic exposure to R and statistics will find this book to be useful, the experienced data scientist professional wishing to attain master level status , will also find this book extremely valuable.. This book assumes familiarity with the fundamentals of R, such as the main data types, simple functions, and how to move data around. Although no prior experience with machine learning or predictive modeling is required, there are some advanced topics provided that will require more than novice exposure.
What You Will Learn
- Master the steps involved in the predictive modeling process
- Grow your expertise in using R and its diverse range of packages
- Learn how to classify predictive models and distinguish which models are suitable for a particular problem
- Understand steps for tidying data and improving the performing metrics
- Recognize the assumptions, strengths, and weaknesses of a predictive model
- Understand how and why each predictive model works in R
- Select appropriate metrics to assess the performance of different types of predictive model
- Explore word embedding and recurrent neural networks in R
- Train models in R that can work on very large datasets
In Detail
R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems.
The book begins with a dedicated chapter on the language of models and the predictive modeling process. You will understand the learning curve and the process of tidying data. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real-world datasets. How do you train models that can handle really large datasets? This book will also show you just that. Finally, you will tackle the really important topic of deep learning by implementing applications on word embedding and recurrent neural networks.
By the end of this book, you will have explored and tested the most popular modeling techniques in use on real- world datasets and mastered a diverse range of techniques in predictive analytics using R.
Style and approach
This book takes a step-by-step approach in explaining the intermediate to advanced concepts in predictive analytics. Every concept is explained in depth, supplemented with practical examples applicable in a real-world setting.
商品描述(中文翻譯)
掌握在 R 中進行預測建模的技藝,發展策略、直覺以及在基本概念上的堅實基礎
關於本書
- 理解預測建模的主要方法,並超越黑箱思維,達到更深層次的理解
- 利用 R 的靈活性和模組化,實驗各種不同的技術和數據類型
- 充滿實用建議和技巧,解釋重要概念和最佳實踐,幫助您快速輕鬆地理解
本書適合誰
雖然剛入門的數據科學家、預測建模者或只有基本 R 和統計知識的量化分析師會發現本書有用,但希望達到專家級別的經驗豐富的數據科學專業人士也會發現本書極具價值。本書假設讀者對 R 的基本概念有一定的熟悉度,例如主要數據類型、簡單函數以及如何處理數據。雖然不需要有機器學習或預測建模的先前經驗,但本書中提供的一些進階主題將需要超過初學者的知識。
您將學到什麼
- 掌握預測建模過程中的步驟
- 增強使用 R 及其多樣化套件的專業知識
- 學習如何分類預測模型並區分哪些模型適合特定問題
- 理解整理數據和改善性能指標的步驟
- 認識預測模型的假設、優勢和劣勢
- 理解每個預測模型在 R 中的運作方式及其原因
- 選擇適當的指標來評估不同類型預測模型的性能
- 探索 R 中的詞嵌入和循環神經網絡
- 在 R 中訓練能處理非常大數據集的模型
詳細內容
R 提供了一個免費且開源的環境,非常適合學習和部署預測建模解決方案。隨著其不斷增長的社群和大量的套件,R 提供了處理各種問題的功能。
本書以專門的一章介紹模型的語言和預測建模過程開始。您將了解學習曲線和整理數據的過程。隨後的每一章都針對特定類型的模型,例如神經網絡,並專注於三個重要問題:模型如何運作、如何使用 R 進行訓練,以及如何使用真實世界數據集來測量和評估其性能。您將學習如何訓練能夠處理非常大數據集的模型。本書也將展示如何實現深度學習的真正重要主題,通過在詞嵌入和循環神經網絡上實施應用。
在本書結束時,您將探索並測試在真實世界數據集上使用的最流行建模技術,並掌握使用 R 進行預測分析的多樣化技術。
風格與方法
本書採取逐步的方法來解釋預測分析中的中級到高級概念。每個概念都深入解釋,並輔以適用於現實世界的實用範例。