Learning Predictive Analytics with Python(Paperback)
暫譯: 使用 Python 學習預測分析(平裝本)
Ashish Kumar
- 出版商: Packt Publishing
- 出版日期: 2016-02-11
- 售價: $1,730
- 貴賓價: 9.5 折 $1,644
- 語言: 英文
- 頁數: 354
- 裝訂: Paperback
- ISBN: 1783983264
- ISBN-13: 9781783983261
-
相關分類:
Python、程式語言、Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$500$450 -
$780$616 -
$360$284 -
$580$452 -
$580$458 -
$500$425 -
$790$672 -
$860$731 -
$590$460 -
$390$308 -
$958深度學習
-
$450$383 -
$480$432 -
$480$379 -
$650$514 -
$240$228 -
$680$537 -
$400$316 -
$520$411 -
$450$356 -
$500$390 -
$780$616 -
$520$406 -
$403OpenCV 算法精解:基於 Python 與 C++
-
$500$425
商品描述
Gain practical insights into predictive modelling by implementing Predictive Analytics algorithms on public datasets with Python
About This Book
- A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices
- Get to grips with the basics of Predictive Analytics with Python
- Learn how to use the popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering
Who This Book Is For
If you wish to learn how to implement Predictive Analytics algorithms using Python libraries, then this is the book for you. If you are familiar with coding in Python (or some other programming/statistical/scripting language) but have never used or read about Predictive Analytics algorithms, this book will also help you. The book will be beneficial to and can be read by any Data Science enthusiasts. Some familiarity with Python will be useful to get the most out of this book, but it is certainly not a prerequisite.
What You Will Learn
- Understand the statistical and mathematical concepts behind Predictive Analytics algorithms and implement Predictive Analytics algorithms using Python libraries
- Analyze the result parameters arising from the implementation of Predictive Analytics algorithms
- Write Python modules/functions from scratch to execute segments or the whole of these algorithms
- Recognize and mitigate various contingencies and issues related to the implementation of Predictive Analytics algorithms
- Get to know various methods of importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and numpy
- Create dummy datasets and simple mathematical simulations using the Python numpy and pandas libraries
- Understand the best practices while handling datasets in Python and creating predictive models out of them
In Detail
Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age.
This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy.
You'll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world.
Style and approach
All the concepts in this book been explained and illustrated using a dataset, and in a step-by-step manner. The Python code snippet to implement a method or concept is followed by the output, such as charts, dataset heads, pictures, and so on. The statistical concepts are explained in detail wherever required.
商品描述(中文翻譯)
透過在公共數據集上使用 Python 實現預測分析算法,獲得預測建模的實用見解
本書介紹
- 逐步指南,涵蓋預測建模的眾多提示、技巧和最佳實踐
- 掌握使用 Python 進行預測分析的基本知識
- 學習如何使用流行的預測建模算法,如線性回歸、決策樹、邏輯回歸和聚類
本書適合誰閱讀
如果您希望學習如何使用 Python 庫實現預測分析算法,那麼這本書就是為您而寫。如果您熟悉 Python(或其他編程/統計/腳本語言)的編碼,但從未使用或閱讀過預測分析算法,這本書也將對您有所幫助。本書對任何數據科學愛好者都將是有益的,雖然對 Python 有一定的熟悉度將有助於您充分利用本書,但這並不是必需的前提條件。
您將學到什麼
- 理解預測分析算法背後的統計和數學概念,並使用 Python 庫實現預測分析算法
- 分析實現預測分析算法所產生的結果參數
- 從零開始編寫 Python 模塊/函數,以執行這些算法的部分或全部
- 識別並減輕與實現預測分析算法相關的各種突發事件和問題
- 了解使用 pandas 和 numpy 導入、清理、子集、合併、連接、串接、探索、分組和繪製數據的各種方法
- 使用 Python 的 numpy 和 pandas 庫創建虛擬數據集和簡單的數學模擬
- 理解在 Python 中處理數據集和從中創建預測模型的最佳實踐
詳細內容
社交媒體和物聯網導致了數據的激增。數據是強大的,但在原始形式下並不具備價值——它需要被處理和建模,而 Python 是實現這一目標的最強大工具之一。它擁有一系列用於預測建模的包和多種 IDE 可供選擇。在這個數據時代,學會預測誰會贏、輸、購買、說謊或死亡是必不可少的技能。
這本書是您開始使用 Python 進行預測分析的指南。您將學習如何處理數據並從中製作預測模型。我們平衡了統計和數學概念,並使用 pandas、scikit-learn 和 numpy 等庫在 Python 中實現它們。
您將首先了解預測建模的基本知識,然後學習如何清理數據中的雜質,並為預測建模做好準備。您還將深入了解最佳的預測建模算法,如線性回歸、決策樹和邏輯回歸。最後,您將學習預測建模的最佳實踐,以及預測建模在現代世界中的不同應用。
風格與方法
本書中的所有概念均使用數據集進行解釋和說明,並以逐步的方式呈現。實現某個方法或概念的 Python 代碼片段後面會跟隨輸出,例如圖表、數據集頭部、圖片等。統計概念在需要的地方會詳細解釋。