-
出版商:
Independently published
-
出版日期:
2018-08-11
-
售價:
$1,600
-
貴賓價:
9.5 折
$1,520
-
語言:
英文
-
頁數:
510
-
裝訂:
Paperback
-
ISBN:
1718120125
-
ISBN-13:
9781718120129
-
相關分類:
推薦系統、Machine Learning、DeepLearning
買這商品的人也買了...
-
$880
$695
深入淺出設計模式 (Head First Design Patterns)
-
$1,480
$1,406
Java Persistence with JPA (Paperback)
-
$550
$468
大象-Thinking in UML, 2/e (書頁有些許瑕疵,不介意再下單)
-
$1,362
Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (Hardcover)
-
$690
$538
Android Hacker's Handbook 駭客攻防聖經 (Android Hacker's Handbook)
-
$690
$538
The Browser Hacker's Handbook 駭客攻防聖經 (The Browser Hacker's Handbook)
-
$2,900
$2,755
Recommender Systems: The Textbook
-
$680
$530
Python + Spark 2.0 + Hadoop 機器學習與大數據分析實戰
-
$500
$425
為你自己學 Git
-
$780
$741
資訊與網路安全概論:進入區塊鏈世界, 6/e
-
$620
$490
Deep Learning 深度學習基礎|設計下一代人工智慧演算法 (Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms)
-
$580
$458
Flask 網頁開發, 2/e (Flask Web Development : Developing Web Applications with Python, 2/e)
-
$480
$379
區塊鏈智慧合約開發與安全防護實作
-
$580
$493
不只是金融商品:區塊鏈技術用程式碼實作
-
$580
$493
比特幣out、以太坊in: 超越交易實作區塊鏈技術
-
$1,788
Neural Networks and Deep Learning: A Textbook
-
$1,050
$998
Hands-On Recommendation Systems with Python: Start building powerful and personalized, recommendation engines with Python
-
$600
$468
職業駭客的告白 : 軟體反組譯、木馬病毒與入侵翻牆竊密 (暢銷回饋版)
-
$520
$406
7天學會大數據資料處理 — NoSQL:MongoDB 入門與活用, 3/e
-
$1,000
$790
Deep learning 深度學習必讀 - Keras 大神帶你用 Python 實作 (Deep Learning with Python)
-
$420
$357
駭客的 Linux 基礎入門必修課 (Linux Basics for Hackers: Getting Started with Networking, Scripting, and Security in Kali)
-
$780
$616
Python 技術者們 - 練功!老手帶路教你精通正宗 Python 程式 (The Quick Python Book, 3/e)
-
$560
$442
PHP 7 & MySQL 網站開發 -- 超威範例集, 3/e
-
$580
$452
PHP 動態網站系統開發與 Laravel 框架運用
-
$600
$300
區塊鏈生存指南:帶你用 Python 寫出區塊鏈!【第二版】(iT邦幫忙鐵人賽系列書)
商品描述
Learn how to build recommender systems from one of Amazon's pioneers in the field. Frank Kane spent over nine years at Amazon, where he managed and led the development of many of Amazon's personalized product recommendation technologies. You've seen automated recommendations everywhere - on Netflix's home page, on YouTube, and on Amazon as these machine learning algorithms learn about your unique interests, and show the best products or content for you as an individual. These technologies have become central to the largest, most prestigious tech employers out there, and by understanding how they work, you'll become very valuable to them. This book is adapted from Frank's popular online course published by Sundog Education, so you can expect lots of visual aids from its slides and a conversational, accessible tone throughout the book. The graphics and scripts from over 300 slides are included, and you'll have access to all of the source code associated with it as well. We'll cover tried and true recommendation algorithms based on neighborhood-based collaborative filtering, and work our way up to more modern techniques including matrix factorization and even deep learning with artificial neural networks. Along the way, you'll learn from Frank's extensive industry experience to understand the real-world challenges you'll encounter when applying these algorithms at large scale and with real-world data. This book is very hands-on; you'll develop your own framework for evaluating and combining many different recommendation algorithms together, and you'll even build your own neural networks using Tensorflow to generate recommendations from real-world movie ratings from real people. We'll cover: -Building a recommendation engine -Evaluating recommender systems -Content-based filtering using item attributes -Neighborhood-based collaborative filtering with user-based, item-based, and KNN CF -Model-based methods including matrix factorization and SVD -Applying deep learning, AI, and artificial neural networks to recommendations -Session-based recommendations with recursive neural networks -Scaling to massive data sets with Apache Spark machine learning, Amazon DSSTNE deep learning, and AWS SageMaker with factorization machines -Real-world challenges and solutions with recommender systems -Case studies from YouTube and Netflix -Building hybrid, ensemble recommenders This comprehensive book takes you all the way from the early days of collaborative filtering, to bleeding-edge applications of deep neural networks and modern machine learning techniques for recommending the best items to every individual user. The coding exercises for this book use the Python programming language. We include an intro to Python if you're new to it, but you'll need some prior programming experience in order to use this book successfully. We also include a short introduction to deep learning, Tensorfow, and Keras if you are new to the field of artificial intelligence, but you'll need to be able to understand new computer algorithms. Dive in, and learn about one of the most interesting and lucrative applications of machine learning and deep learning there is!
商品描述(中文翻譯)
學習如何從亞馬遜領域的先驅之一建立推薦系統。Frank Kane 在亞馬遜工作了超過九年,期間他管理並領導了許多亞馬遜個性化產品推薦技術的開發。你在各處都看到了自動化推薦——在 Netflix 的首頁、在 YouTube 上,以及在亞馬遜上,這些機器學習算法學習你的獨特興趣,並為你這個個體展示最佳產品或內容。這些技術已成為最大的、最具聲望的科技雇主的核心,通過理解它們的運作方式,你將變得非常有價值。本書改編自 Frank 在 Sundog Education 發布的熱門在線課程,因此你可以期待從其幻燈片中獲得大量視覺輔助資料,並且整本書的語氣都會是對話式且易於理解的。書中包含了超過 300 張幻燈片的圖形和腳本,你也將獲得與之相關的所有源代碼。我們將涵蓋基於鄰域的協同過濾的成熟推薦算法,並逐步深入到包括矩陣分解甚至使用人工神經網絡的深度學習等更現代的技術。在這個過程中,你將從 Frank 的豐富行業經驗中學習,了解在大規模應用這些算法和處理真實數據時所面臨的現實挑戰。本書非常實用;你將開發自己的框架來評估和結合許多不同的推薦算法,甚至使用 Tensorflow 構建自己的神經網絡,從真實人員的電影評分中生成推薦。我們將涵蓋:- 建立推薦引擎 - 評估推薦系統 - 使用項目屬性的內容過濾 - 基於鄰域的協同過濾,包括基於用戶、基於項目和 KNN CF - 基於模型的方法,包括矩陣分解和 SVD - 將深度學習、人工智慧和人工神經網絡應用於推薦 - 使用遞歸神經網絡的會話基推薦 - 使用 Apache Spark 機器學習、亞馬遜 DSSTNE 深度學習和 AWS SageMaker 與分解機器擴展到大規模數據集 - 與推薦系統相關的現實挑戰和解決方案 - 來自 YouTube 和 Netflix 的案例研究 - 建立混合、集成推薦系統 本書全面涵蓋了從協同過濾的早期階段到深度神經網絡和現代機器學習技術的尖端應用,旨在為每位用戶推薦最佳項目。本書的編碼練習使用 Python 編程語言。如果你是新手,我們會提供 Python 的簡介,但你需要具備一些先前的編程經驗才能成功使用本書。我們還會簡要介紹深度學習、Tensorflow 和 Keras,如果你對人工智慧領域不熟悉,但你需要能夠理解新的計算機算法。深入學習,了解機器學習和深度學習中最有趣且最有利可圖的應用之一!