Kernel Mean Embedding of Distributions: A Review and Beyond (Foundations and Trends(r) in Machine Learning)
暫譯: 分佈的核均值嵌入:回顧與展望(機器學習的基礎與趨勢)

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur

  • 出版商: Now Publishers Inc
  • 出版日期: 2017-06-28
  • 售價: $3,650
  • 貴賓價: 9.5$3,468
  • 語言: 英文
  • 頁數: 154
  • 裝訂: Paperback
  • ISBN: 1680832883
  • ISBN-13: 9781680832884
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

A Hilbert space embedding of a distribution—in short, a kernel mean embedding—has recently emerged as a powerful tool for machine learning and statistical inference. The basic idea behind this framework is to map distributions into a reproducing kernel Hilbert space (RKHS) in which the whole arsenal of kernel methods can be extended to probability measures. It can be viewed as a generalization of the original “feature map” common to support vector machines (SVMs) and other kernel methods. In addition to the classical applications of kernel methods, the kernel mean embedding has found novel applications in fields ranging from probabilistic modeling to statistical inference, causal discovery, and deep learning.

Kernel Mean Embedding of Distributions: A Review and Beyond provides a comprehensive review of existing work and recent advances in this research area, and to discuss some of the most challenging issues and open problems that could potentially lead to new research directions. The targeted audience includes graduate students and researchers in machine learning and statistics who are interested in the theory and applications of kernel mean embeddings.

商品描述(中文翻譯)

一個分佈的希爾伯特空間嵌入——簡稱為核均值嵌入——最近已成為機器學習和統計推斷的一個強大工具。這個框架的基本思想是將分佈映射到重生核希爾伯特空間(RKHS),在這個空間中,整個核方法的工具可以擴展到概率測度。它可以被視為對支持向量機(SVM)和其他核方法中常見的原始“特徵映射”的一種概括。除了核方法的經典應用外,核均值嵌入在從概率建模到統計推斷、因果發現和深度學習等領域中找到了新穎的應用。

《分佈的核均值嵌入:回顧與展望》提供了對該研究領域現有工作和最近進展的全面回顧,並討論了一些最具挑戰性的問題和未解決的問題,這些問題可能會導致新的研究方向。目標讀者包括對核均值嵌入的理論和應用感興趣的研究生和機器學習及統計領域的研究人員。

最後瀏覽商品 (20)