Kernel Methods for Machine Learning with Math and Python: 100 Exercises for Building Logic
暫譯: 機器學習的核心方法:數學與 Python 的 100 道邏輯建構練習
Suzuki, Joe
- 出版商: Springer
- 出版日期: 2022-05-15
- 售價: $2,280
- 貴賓價: 9.5 折 $2,166
- 語言: 英文
- 頁數: 222
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9811904006
- ISBN-13: 9789811904004
-
相關分類:
Python、程式語言、Machine Learning
海外代購書籍(需單獨結帳)
商品描述
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building Python programs.
The book's main features are as follows:
- The content is written in an easy-to-follow and self-contained style.
- The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book.
- The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels.
- Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used.
- Once readers have a basic understanding of the functional analysistopics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed.
- This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two.
商品描述(中文翻譯)
最重要的機器學習和數據科學能力是數學邏輯,這是理解其本質的關鍵,而不是依賴知識或經驗。本教科書通過考慮相關的數學問題並構建 Python 程式,來探討機器學習的核心方法基礎。
本書的主要特點如下:
- 內容以易於理解且自成一體的風格撰寫。
- 本書包含 100 道經過精心挑選和修訂的練習題。由於其解答已在正文中提供,讀者可以通過閱讀本書解決所有練習題。
- 核心的數學前提已被證明,並提供正確的結論,幫助讀者理解核心的本質。
- 提供源程式和運行範例,幫助讀者更深入地理解所使用的數學。
- 一旦讀者對第二章所涵蓋的函數分析主題有基本了解,後續章節將討論應用。在這裡,並不假設讀者具備數學的先前知識。
- 本書考慮了重現核希爾伯特空間(RKHS)的核和高斯過程的核,並對兩者進行了明確的區分。