Statistical Learning with Math and Python: 100 Exercises for Building Logic
暫譯: 數學與 Python 的統計學習:邏輯建立的 100 道練習題

Suzuki, Joe

  • 出版商: Springer
  • 出版日期: 2021-08-04
  • 售價: $1,810
  • 貴賓價: 9.5$1,720
  • 語言: 英文
  • 頁數: 256
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9811578761
  • ISBN-13: 9789811578762
  • 相關分類: Python程式語言
  • 海外代購書籍(需單獨結帳)

商品描述

The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of machine learning and data science by considering math problems and building Python programs.

As the preliminary part, Chapter 1 provides a concise introduction to linear algebra, which will help novices read further to the following main chapters. Those succeeding chapters present essential topics in statistical learning: linear regression, classification, resampling, information criteria, regularization, nonlinear regression, decision trees, support vector machines, and unsupervised learning.

Each chapter mathematically formulates and solves machine learning problems and builds the programs. The body of a chapter is accompanied by proofs and programs in an appendix, with exercises at the end of the chapter. Because the book is carefully organized to provide the solutions to the exercises in each chapter, readers can solve the total of 100 exercises by simply following the contents of each chapter.

This textbook is suitable for an undergraduate or graduate course consisting of about 12 lectures. Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning.

商品描述(中文翻譯)

機器學習和數據科學最重要的能力是數學邏輯,以理解其本質,而非僅僅依賴知識和經驗。本教科書通過考慮數學問題並構建 Python 程式來接近機器學習和數據科學的本質。

作為初步部分,第 1 章提供了線性代數的簡明介紹,這將幫助初學者進一步閱讀後面的主要章節。隨後的章節介紹了統計學習中的基本主題:線性回歸、分類、重抽樣、信息準則、正則化、非線性回歸、決策樹、支持向量機和無監督學習。

每一章都以數學方式公式化並解決機器學習問題,並構建相應的程式。章節的主體部分附有證明和程式在附錄中,章末還有練習題。由於本書經過精心組織,提供每章練習題的解答,讀者可以通過簡單跟隨每章的內容來解決總共 100 道練習題。

本教科書適合約 12 堂課的本科或研究生課程。以易於理解和自成一體的風格撰寫,這本書也將是獨立學習的完美材料。

作者簡介

Joe Suzuki is a professor of statistics at Osaka University, Japan. He has published more than 100 papers on graphical models and information theory.

作者簡介(中文翻譯)

鈴木喬(Joe Suzuki)是日本大阪大學的統計學教授。他在圖形模型和信息理論方面發表了超過100篇論文。