Information and Influence Propagation in Social Networks (Paperback)
暫譯: 社交網絡中的信息與影響傳播 (平裝本)
Wei Chen, Laks V.S. Lakshmanan, Carlos Castillo
- 出版商: Morgan & Claypool
- 出版日期: 2013-10-01
- 售價: $1,700
- 貴賓價: 9.5 折 $1,615
- 語言: 英文
- 頁數: 178
- 裝訂: Paperback
- ISBN: 1627051155
- ISBN-13: 9781627051156
-
相關分類:
大數據 Big-data、行銷/網路行銷 Marketing
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,148Data Mining : Concepts and Techniques, 3/e (Hardcover)
-
$2,520$2,394 -
$1,617Deep Learning (Hardcover)
相關主題
商品描述
Research on social networks has exploded over the last decade. To a large extent, this has been fueled by the spectacular growth of social media and online social networking sites, which continue growing at a very fast pace, as well as by the increasing availability of very large social network datasets for purposes of research. A rich body of this research has been devoted to the analysis of the propagation of information, influence, innovations, infections, practices and customs through networks. Can we build models to explain the way these propagations occur? How can we validate our models against any available real datasets consisting of a social network and propagation traces that occurred in the past? These are just some questions studied by researchers in this area. Information propagation models find applications in viral marketing, outbreak detection, finding key blog posts to read in order to catch important stories, finding leaders or trendsetters, information feed ranking, etc. A number of algorithmic problems arising in these applications have been abstracted and studied extensively by researchers under the garb of influence maximization.
This book starts with a detailed description of well-established diffusion models, including the independent cascade model and the linear threshold model, that have been successful at explaining propagation phenomena. We describe their properties as well as numerous extensions to them, introducing aspects such as competition, budget, and time-criticality, among many others. We delve deep into the key problem of influence maximization, which selects key individuals to activate in order to influence a large fraction of a network. Influence maximization in classic diffusion models including both the independent cascade and the linear threshold models is computationally intractable, more precisely #P-hard, and we describe several approximation algorithms and scalable heuristics that have been proposed in the literature. Finally, we also deal with key issues that need to be tackled in order to turn this research into practice, such as learning the strength with which individuals in a network influence each other, as well as the practical aspects of this research including the availability of datasets and software tools for facilitating research. We conclude with a discussion of various research problems that remain open, both from a technical perspective and from the viewpoint of transferring the results of research into industry strength applications.
Table of Contents: Acknowledgments / Introduction / Stochastic Diffusion Models / Influence Maximization / Extensions to Diffusion Modeling and Influence Maximization / Learning Propagation Models / Data and Software for Information/Influence: Propagation Research / Conclusion and Challenges / Bibliography / Authors' Biographies / Index
商品描述(中文翻譯)
社交網絡的研究在過去十年中迅速增長。在很大程度上,這是由於社交媒體和在線社交網絡網站的驚人增長,這些平台仍在以非常快的速度增長,以及越來越多的大型社交網絡數據集可用於研究目的。這些研究中有大量的內容專注於分析信息、影響、創新、感染、實踐和習俗在網絡中的傳播。我們能否建立模型來解釋這些傳播是如何發生的?我們如何能夠利用任何可用的真實數據集來驗證我們的模型,這些數據集由過去發生的社交網絡和傳播痕跡組成?這些只是該領域研究人員所探討的一些問題。信息傳播模型在病毒營銷、疫情檢測、尋找關鍵博客文章以捕捉重要故事、尋找領導者或趨勢引領者、信息源排名等方面都有應用。在這些應用中出現的一些算法問題已被研究人員抽象化並廣泛研究,這些研究通常以影響力最大化的名義進行。
本書首先詳細描述了已建立的擴散模型,包括獨立級聯模型和線性閾值模型,這些模型在解釋傳播現象方面取得了成功。我們描述了它們的特性以及對它們的多種擴展,介紹了競爭、預算和時間緊迫性等方面。我們深入探討了影響力最大化的關鍵問題,該問題選擇關鍵個體進行激活,以影響網絡中的大量成員。在經典擴散模型中,包括獨立級聯和線性閾值模型的影響力最大化是計算上不可行的,更準確地說是 #P-困難,我們描述了文獻中提出的幾種近似算法和可擴展的啟發式方法。最後,我們還處理了需要解決的關鍵問題,以便將這項研究轉化為實踐,例如學習網絡中個體之間的影響力強度,以及這項研究的實際方面,包括可用數據集和促進研究的軟件工具。我們以討論各種仍然開放的研究問題作結,這些問題既包括技術視角,也包括將研究結果轉化為行業應用的觀點。
目錄:致謝 / 介紹 / 隨機擴散模型 / 影響力最大化 / 擴散建模和影響力最大化的擴展 / 學習傳播模型 / 信息/影響的數據和軟件:傳播研究 / 結論與挑戰 / 參考文獻 / 作者簡介 / 索引