Semantic Mining of Social Networks (Synthesis Lectures on the Semantic Web: Theory and Technology)
暫譯: 社交網絡的語義挖掘(語義網:理論與技術綜合講座)

Jie Tang, Juanzi Li

  • 出版商: Morgan & Claypool
  • 出版日期: 2015-04-01
  • 售價: $2,090
  • 貴賓價: 9.5$1,986
  • 語言: 英文
  • 頁數: 193
  • 裝訂: Paperback
  • ISBN: 1608458571
  • ISBN-13: 9781608458578
  • 海外代購書籍(需單獨結帳)

商品描述

Online social networks have already become a bridge connecting our physical daily life with the (web-based) information space. This connection produces a huge volume of data, not only about the information itself, but also about user behavior. The ubiquity of the social Web and the wealth of social data offer us unprecedented opportunities for studying the interaction patterns among users so as to understand the dynamic mechanisms underlying different networks, something that was previously difficult to explore due to the lack of available data. In this book, we present the architecture of the research for social network mining, from a microscopic point of view. We focus on investigating several key issues in social networks. Specifically, we begin with analytics of social interactions between users. The first kinds of questions we try to answer are: What are the fundamental factors that form the different categories of social ties? How have reciprocal relationships been developed from parasocial relationships? How do connected users further form groups? Another theme addressed in this book is the study of social influence. Social influence occurs when one's opinions, emotions, or behaviors are affected by others, intentionally or unintentionally. Considerable research has been conducted to verify the existence of social influence in various networks. However, few literature studies address how to quantify the strength of influence between users from different aspects. In Chapter 4 and in [138], we have studied how to model and predict user behaviors. One fundamental problem is distinguishing the effects of different social factors such as social influence, homophily, and individual's characteristics. We introduce a probabilistic model to address this problem. Finally, we use an academic social network, ArnetMiner, as an example to demonstrate how we apply the introduced technologies for mining real social networks. In this system, we try to mine knowledge from both the informative (publication) network and the social (collaboration) network, and to understand the interaction mechanisms between the two networks. The system has been in operation since 2006 and has already attracted millions of users from more than 220 countries/regions.

商品描述(中文翻譯)

線上社交網絡已經成為連接我們實體日常生活與(基於網路的)資訊空間的橋樑。這種連結產生了大量的數據,不僅關於資訊本身,還包括用戶行為。社交網路的普及性和豐富的社交數據為我們提供了前所未有的機會來研究用戶之間的互動模式,以理解不同網絡背後的動態機制,這在以往由於缺乏可用數據而難以探索。在本書中,我們從微觀的角度介紹社交網絡挖掘的研究架構。我們專注於調查社交網絡中的幾個關鍵問題。具體而言,我們首先分析用戶之間的社交互動。我們試圖回答的第一類問題是:形成不同類別社交聯繫的基本因素是什麼?互惠關係是如何從準社交關係中發展而來的?連接的用戶如何進一步形成群體?本書探討的另一個主題是社會影響的研究。社會影響發生在一個人的意見、情感或行為受到他人的影響時,無論是有意還是無意。已有大量研究驗證了社會影響在各種網絡中的存在。然而,鮮有文獻研究如何從不同方面量化用戶之間影響的強度。在第4章和[138]中,我們研究了如何建模和預測用戶行為。一個基本問題是區分社會影響、同質性和個人特徵等不同社會因素的影響。我們引入了一個概率模型來解決這個問題。最後,我們以學術社交網絡ArnetMiner為例,展示如何應用所介紹的技術來挖掘真實的社交網絡。在這個系統中,我們試圖從資訊(出版)網絡和社交(合作)網絡中挖掘知識,並理解這兩個網絡之間的互動機制。該系統自2006年以來一直在運行,已經吸引了來自220多個國家/地區的數百萬用戶。

最後瀏覽商品 (20)