Mining Lurkers in Online Social Networks: Principles, Models, and Computational Methods (SpringerBriefs in Computer Science)
暫譯: 在線社交網絡中的潛伏者挖掘:原則、模型與計算方法 (SpringerBriefs in Computer Science)
Andrea Tagarelli
- 出版商: Springer
- 出版日期: 2018-11-19
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 100
- 裝訂: Paperback
- ISBN: 3030002284
- ISBN-13: 9783030002282
-
相關分類:
Computer-Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
This SpringerBrief brings order to the wealth of research studies that contribute to shape our understanding of on-line social networks (OSNs) lurking phenomena. This brief also drives the development of computational approaches that can be effectively applied to answer questions related to lurking behaviors, as well as to the engagement of lurkers in OSNs.
All large-scale online social networks (OSNs) are characterized by a participation inequality principle, i.e., the crowd of an OSN does not actively contribute, rather it takes on a silent role. Silent users are also referred to as lurkers, since they gain benefit from others' information without significantly giving back to the community. Nevertheless, lurkers acquire knowledge from the OSN, therefore a major goal is to encourage them to more actively participate.Lurking behavior analysis has been long studied in social science and human-computer interaction fields, but it has also matured over the last few years in social network analysis and mining.
While the main target audience corresponds to computer, network, and web data scientists, this brief might also help increase the visibility of the topic by bridging different closely related research fields. Practitioners, researchers and students interested in social networks, web search, data mining, computational social science and human-computer interaction will also find this brief useful research material .
商品描述(中文翻譯)
這本SpringerBrief整理了大量的研究,這些研究有助於我們理解在線社交網絡(OSNs)中的潛伏現象。這本簡報還推動了計算方法的發展,這些方法可以有效地應用於回答與潛伏行為相關的問題,以及潛伏者在OSNs中的參與情況。
所有大型在線社交網絡(OSNs)都以參與不平等原則為特徵,即OSN中的群眾並不積極貢獻,而是扮演一個沉默的角色。沉默的用戶也被稱為潛伏者,因為他們從他人的信息中獲益,而不會顯著回饋社群。然而,潛伏者從OSN中獲取知識,因此一個主要目標是鼓勵他們更積極地參與。
潛伏行為分析在社會科學和人機互動領域已經研究了很長時間,但在社交網絡分析和挖掘方面在過去幾年中也得到了成熟。
雖然主要目標受眾是計算機、網絡和網頁數據科學家,但這本簡報也可能通過橋接不同的相關研究領域來提高該主題的可見性。對社交網絡、網頁搜索、數據挖掘、計算社會科學和人機互動感興趣的從業者、研究人員和學生也會發現這本簡報是有用的研究材料。