Exploratory Analysis in Dynamic Social Networks: Theoretical and Practical Applications
暫譯: 動態社交網絡中的探索性分析:理論與實務應用

Dr Carlos Andre Pinheiro, Dr Markus Helfert

  • 出版商: CreateSpace Independ
  • 出版日期: 2012-12-17
  • 售價: $5,090
  • 貴賓價: 9.5$4,836
  • 語言: 英文
  • 頁數: 210
  • 裝訂: Paperback
  • ISBN: 1461098734
  • ISBN-13: 9781461098737
  • 海外代購書籍(需單獨結帳)

商品描述

Social interactions within networks comprise an increasing event nowadays. Different aspects of societies and competitive markets, such as Social Medias through the Internet and Telecommunications environments hold a high correlation with the social network analysis methodology. By understanding these social structures and its interactions might be possible to realize how individuals and consumers relate each other and hence predict further social structures in the future. However, most of the current social network analysis projects are in relation to static structures, not considering how the social network evolves over the time. The dynamic approach can points out new perspectives in terms of social network analysis, including prediction and simulations scenarios. In order to perceive the social network relations over the time is crucial to collect the distinct snapshots of the social structure, understanding not just how the social members relate each other but in addition to that how this relationships evolves over the time. Measures in relation to social network describe nodes and links by static metrics, depicting its strength, its overall distances to the other related nodes, and its amounts of connections, among others. This dynamic approach makes possible to create a historical data, quite usual for predictive modeling. As such, new social network measures and algorithms should be created in order to describe dynamic features assigned to social structures over the time. Chapter 1 gives a brief overview of social network, such as its characteristics and how to visualize it. Chapter 2 discusses the general practice of building pervasive online social networks using real-world services and presents various projects that focus on the online social networking of the physical world. Chapter 3 presents a semantic model, non probabilistic and predictive, for the decisional analysis of professional and institutional social networks. Chapter 4 describes a novel approach towards the visualization and analysis of network dynamics. The goal is to handle network data and visualization in ways that explicitly deal with its time-based nature while simultaneously assessing nodal- and macro- network dynamics. Chapter 5 shows how the network topology affects epidemic diffusion and cascade dynamics. It also clarifies the largest maximum eigenvalue of the adjacency matrix of the network is the key index to estimate the properties of networks. Chapter 6, discusses the behaviors of malware propagation in online social networks using analytical models and conducts some simulations. Chapter 7 analyzes the Google Analytics data from multiple web companies. These web services all positioned themselves as social network sites within a relatively short time from their establishment. Several important measures available on Google Analytics were discussed with experienced practitioners to be identified for data collection. Chapter 8 explores the effects of spatiality and the direction of information transmission over cooperation dynamics. The model is based on the well-known "selfish herd" concept, and assumes that cultural and biological dynamics are driven by natural selection of the phenotypes. This model allows us to study the differences between the dynamics of cooperative, group-forming individuals subject to a selective pressure (predation). Chapter 9 does the survey about the types of private information and privacy threats on social network graphs, and then introduce the methods to protect the private information. Chapter 10 reviews the e-Government development processes in Canada, Malaysia, Australia, Singapore and Korea in order to identify the factors that contribute to the successful development of e-Government therein.

商品描述(中文翻譯)

社交網絡中的互動在當今已成為一個日益增長的事件。社會和競爭市場的不同面向,例如透過互聯網和電信環境的社交媒體,與社交網絡分析方法論有著高度的相關性。通過理解這些社會結構及其互動,可能有助於了解個人和消費者之間的關係,進而預測未來的社會結構。然而,目前大多數社交網絡分析項目與靜態結構有關,並未考慮社交網絡隨時間的演變。動態方法可以在社交網絡分析中指出新的視角,包括預測和模擬場景。為了感知社交網絡隨時間的關係,收集社會結構的不同快照至關重要,不僅要理解社會成員之間的關係,還要了解這些關係如何隨時間演變。與社交網絡相關的度量通過靜態指標描述節點和連結,描繪其強度、與其他相關節點的整體距離以及連接數量等。這種動態方法使得創建歷史數據成為可能,這在預測建模中相當常見。因此,應該創建新的社交網絡度量和算法,以描述隨時間變化的社會結構的動態特徵。

第一章簡要概述了社交網絡的特徵及其可視化方法。第二章討論了使用現實世界服務構建普遍在線社交網絡的一般實踐,並介紹了專注於物理世界在線社交網絡的各種項目。第三章提出了一個語義模型,這是一個非概率性和預測性的模型,用於專業和機構社交網絡的決策分析。第四章描述了一種新穎的方法,用於網絡動態的可視化和分析。其目標是以明確處理其基於時間的特性來處理網絡數據和可視化,同時評估節點和宏觀網絡的動態。第五章展示了網絡拓撲如何影響流行病擴散和級聯動態。它還闡明了網絡鄰接矩陣的最大特徵值是估計網絡特性的關鍵指標。第六章討論了使用分析模型在線社交網絡中惡意軟件傳播的行為,並進行了一些模擬。第七章分析了來自多個網絡公司的 Google Analytics 數據。這些網絡服務在成立後相對短的時間內都將自己定位為社交網絡網站。與經驗豐富的從業者討論了 Google Analytics 上可用的幾個重要指標,以便識別數據收集。第八章探討了空間性和信息傳遞方向對合作動態的影響。該模型基於著名的「自私的羊群」概念,並假設文化和生物動態是由表型的自然選擇驅動的。這個模型使我們能夠研究在選擇壓力(捕食)下,合作的、形成群體的個體之間的動態差異。第九章調查了社交網絡圖中私密信息的類型和隱私威脅,然後介紹了保護私密信息的方法。第十章回顧了加拿大、馬來西亞、澳大利亞、新加坡和韓國的電子政府發展過程,以識別促進電子政府成功發展的因素。

最後瀏覽商品 (20)