Tensor Voting
暫譯: 張量投票

Mordohai/Medioni

  • 出版商: Morgan & Claypool
  • 出版日期: 2006-11-20
  • 售價: $1,910
  • 貴賓價: 9.5$1,815
  • 語言: 英文
  • 頁數: 136
  • ISBN: 1598294016
  • ISBN-13: 9781598294019
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

Description

This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organization methodology applicable in situations that may seem heterogeneous initially. We show how several problems can be posed as the organization of the inputs into salient perceptual structures, which are inferred via tensor voting. The work presented here extends the original tensor voting framework with the addition of boundary inference capabilities; a novel re-formulation of the framework applicable to high-dimensional spaces and the development of algorithms for computer vision and machine learning problems. We show complete analysis for some problems, while we briefly outline our approach for other applications and provide pointers to relevant sources.

商品描述(中文翻譯)

**描述**

本講座介紹了一個關於感知組織的一般框架的研究,該研究主要在南加州大學的機器人與智能系統研究所進行。這並不是對該工作的歷史回顧,因為演示的順序並非按時間順序排列。它旨在提出一種針對計算機視覺和機器學習中廣泛問題的數據驅動、本地化的方法,並且需要最少的假設。張量投票框架結合了這些特性,提供了一種統一的感知組織方法論,適用於最初看似異質的情況。我們展示了如何將幾個問題表述為將輸入組織成顯著的感知結構,這些結構是通過張量投票推斷出來的。這裡呈現的工作擴展了原始的張量投票框架,增加了邊界推斷能力;對於高維空間的框架進行了新穎的重新表述,並開發了用於計算機視覺和機器學習問題的算法。我們對某些問題進行了完整的分析,同時簡要概述了我們對其他應用的做法,並提供了相關來源的指引。

最後瀏覽商品 (20)