Hierarchical Perceptual Grouping for Object Recognition: Theoretical Views and Gestalt-Law Applications (Advances in Computer Vision and Pattern Recognition)
暫譯: 物體識別的階層感知分組:理論觀點與格式塔法則應用(計算機視覺與模式識別進展)

Eckart Michaelsen, Jochen Meidow

  • 出版商: Springer
  • 出版日期: 2019-01-12
  • 售價: $4,510
  • 貴賓價: 9.5$4,285
  • 語言: 英文
  • 頁數: 195
  • 裝訂: Hardcover
  • ISBN: 3030040399
  • ISBN-13: 9783030040390
  • 相關分類: Computer Vision
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This unique text/reference presents a unified approach to the formulation of Gestalt laws for perceptual grouping, and the construction of nested hierarchies by aggregation utilizing these laws. The book also describes the extraction of such constructions from noisy images showing man-made objects and clutter. Each Gestalt operation is introduced in a separate, self-contained chapter, together with application examples and a brief literature review. These are then brought together in an algebraic closure chapter, followed by chapters that connect the method to the data – i.e., the extraction of primitives from images, cooperation with machine-readable knowledge, and cooperation with machine learning.

Topics and features: offers the first unified approach to nested hierarchical perceptual grouping; presents a review of all relevant Gestalt laws in a single source; covers reflection symmetry, frieze symmetry, rotational symmetry, parallelism and rectangular settings, contour prolongation, and lattices; describes the problem from all theoretical viewpoints, including syntactic, probabilistic, and algebraic perspectives; discusses issues important to practical application, such as primitive extraction and any-time search; provides an appendix detailing a  general adjustment model with constraints.

This work offers new insights and proposes novel methods to advance the field of machine vision, which will be of great benefit to students, researchers, and engineers active in this area.

商品描述(中文翻譯)

這本獨特的文本/參考書提供了一種統一的方法來制定格式塔法則(Gestalt laws)以進行知覺分組,並通過聚合利用這些法則來構建嵌套層級。書中還描述了如何從顯示人造物體和雜亂的噪聲圖像中提取這些結構。每個格式塔操作在單獨的、自成一體的章節中介紹,並附有應用範例和簡要的文獻回顧。這些內容隨後在一個代數閉合章節中整合,接著是將方法與數據連接的章節——即從圖像中提取原始元素、與機器可讀知識的合作,以及與機器學習的合作。

主題和特點:提供了嵌套層級知覺分組的首個統一方法;在單一來源中回顧所有相關的格式塔法則;涵蓋反射對稱、花紋對稱、旋轉對稱、平行性和矩形設置、輪廓延伸和格子;從所有理論觀點描述問題,包括句法、概率和代數視角;討論對實際應用重要的問題,如原始元素提取和隨時搜索;提供附錄詳細說明具有約束條件的一般調整模型。

這項工作提供了新的見解並提出了新方法,以推進機器視覺領域,這將對活躍於該領域的學生、研究人員和工程師帶來巨大的益處。