Form Symmetries and Reduction of Order in Difference Equations
暫譯: 差分方程中的形式對稱性與階數簡化

Sedaghat, Hassan

  • 出版商: CRC
  • 出版日期: 2019-07-04
  • 售價: $2,610
  • 貴賓價: 9.5$2,480
  • 語言: 英文
  • 頁數: 325
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1138374121
  • ISBN-13: 9781138374126
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Form Symmetries and Reduction of Order in Difference Equations presents a new approach to the formulation and analysis of difference equations in which the underlying space is typically an algebraic group. In some problems and applications, an additional algebraic or topological structure is assumed in order to define equations and obtain significant results about them. Reflecting the author's past research experience, the majority of examples involve equations in finite dimensional Euclidean spaces.

The book first introduces difference equations on groups, building a foundation for later chapters and illustrating the wide variety of possible formulations and interpretations of difference equations that occur in concrete contexts. The author then proposes a systematic method of decomposition for recursive difference equations that uses a semiconjugate relation between maps. Focusing on large classes of difference equations, he shows how to find the semiconjugate relations and accompanying factorizations of two difference equations with strictly lower orders. The final chapter goes beyond semiconjugacy by extending the fundamental ideas based on form symmetries to nonrecursive difference equations.

With numerous examples and exercises, this book is an ideal introduction to an exciting new domain in the area of difference equations. It takes a fresh and all-inclusive look at difference equations and develops a systematic procedure for examining how these equations are constructed and solved.

商品描述(中文翻譯)

《差分方程的形式對稱性與階數簡化》提出了一種新的差分方程的公式化與分析方法,其中基礎空間通常是一個代數群。在某些問題和應用中,假設存在額外的代數或拓撲結構,以便定義方程並獲得有關它們的重要結果。反映作者過去的研究經驗,大多數例子涉及有限維歐幾里得空間中的方程。

本書首先介紹了在群上定義的差分方程,為後續章節奠定基礎,並說明在具體情境中出現的差分方程的多種可能公式化和解釋。接著,作者提出了一種系統的遞歸差分方程分解方法,該方法利用映射之間的半共軛關係。專注於大類差分方程,他展示了如何找到半共軛關係以及伴隨著的兩個階數嚴格較低的差分方程的因式分解。最後一章超越了半共軛,將基於形式對稱性的基本思想擴展到非遞歸差分方程。

本書包含大量例子和練習,是進入差分方程這一令人興奮的新領域的理想入門書籍。它以全新的、包羅萬象的視角來看待差分方程,並發展出一套系統的程序來檢視這些方程是如何構建和解決的。

作者簡介

Hassan Sedaghat is a professor of mathematics at Virginia Commonwealth University. His research interests include difference equations and discrete dynamical systems and their applications in mathematics, economics, biology, and medicine.

作者簡介(中文翻譯)

哈桑·塞達哈特是維吉尼亞聯邦大學的數學教授。他的研究興趣包括差分方程和離散動力系統,以及它們在數學、經濟學、生物學和醫學中的應用。

最後瀏覽商品 (20)