Bayesian Analysis with Stata (Paperback)
暫譯: 使用 Stata 進行貝葉斯分析 (平裝本)
John Thompson
- 出版商: Stata Press
- 出版日期: 2014-05-06
- 售價: $3,390
- 貴賓價: 9.5 折 $3,221
- 語言: 英文
- 頁數: 302
- 裝訂: Paperback
- ISBN: 1597181412
- ISBN-13: 9781597181419
-
相關分類:
機率統計學 Probability-and-statistics
無法訂購
買這商品的人也買了...
-
$450$356 -
$880$695 -
$580$458 -
$780$616 -
$580$452 -
$400$380 -
$820$648 -
$300$285 -
$120$114 -
$800$784 -
$250$238 -
$360$284 -
$780$616 -
$250$238 -
$250$238 -
$600$570 -
$450$356 -
$350$277 -
$490$387 -
$620$527 -
$520$411 -
$560$442 -
$580$458 -
$450$351 -
$450$356
商品描述
Bayesian Analysis with Stata is written for anyone interested in applying Bayesian methods to real data easily. The book shows how modern analyses based on Markov chain Monte Carlo (MCMC) methods are implemented in Stata both directly and by passing Stata datasets to OpenBUGS or WinBUGS for computation, allowing Stata’s data management and graphing capability to be used with OpenBUGS/WinBUGS speed and reliability.
The book emphasizes practical data analysis from the Bayesian perspective, and hence covers the selection of realistic priors, computational efficiency and speed, the assessment of convergence, the evaluation of models, and the presentation of the results. Every topic is illustrated in detail using real-life examples, mostly drawn from medical research.
The book takes great care in introducing concepts and coding tools incrementally so that there are no steep patches or discontinuities in the learning curve. The book's content helps the user see exactly what computations are done for simple standard models and shows the user how those computations are implemented. Understanding these concepts is important for users because Bayesian analysis lends itself to custom or very complex models, and users must be able to code these themselves.
商品描述(中文翻譯)
《使用 Stata 進行貝葉斯分析》是為任何有興趣輕鬆將貝葉斯方法應用於實際數據的人所撰寫的。本書展示了如何在 Stata 中直接實現基於馬可夫鏈蒙地卡羅(Markov chain Monte Carlo, MCMC)方法的現代分析,或通過將 Stata 數據集傳遞給 OpenBUGS 或 WinBUGS 進行計算,從而使 Stata 的數據管理和圖形功能能夠與 OpenBUGS/WinBUGS 的速度和可靠性相結合。
本書強調從貝葉斯的角度進行實用數據分析,因此涵蓋了現實的先驗選擇、計算效率和速度、收斂評估、模型評估以及結果呈現。每個主題都使用詳細的實際案例進行說明,這些案例大多來自醫學研究。
本書在逐步介紹概念和編碼工具方面非常謹慎,以確保學習曲線中沒有陡峭的區段或不連續性。本書的內容幫助用戶清楚地了解簡單標準模型所進行的計算,並展示這些計算是如何實現的。理解這些概念對用戶來說非常重要,因為貝葉斯分析適用於自定義或非常複雜的模型,用戶必須能夠自行編碼這些模型。