Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics Hardcover (理解幾何代數:哈密頓、格拉斯曼與克利福德在電腦視覺與圖形學中的應用)
Kenichi Kanatani
- 出版商: A K Peters
- 出版日期: 2015-04-06
- 售價: $3,610
- 貴賓價: 9.5 折 $3,430
- 語言: 英文
- 頁數: 208
- 裝訂: Hardcover
- ISBN: 1482259508
- ISBN-13: 9781482259506
-
相關分類:
Computer Vision
海外代購書籍(需單獨結帳)
相關主題
商品描述
Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics introduces geometric algebra with an emphasis on the background mathematics of Hamilton, Grassmann, and Clifford. It shows how to describe and compute geometry for 3D modeling applications in computer graphics and computer vision.
Unlike similar texts, this book first gives separate descriptions of the various algebras and then explains how they are combined to define the field of geometric algebra. It starts with 3D Euclidean geometry along with discussions as to how the descriptions of geometry could be altered if using a non-orthogonal (oblique) coordinate system. The text focuses on Hamilton’s quaternion algebra, Grassmann’s outer product algebra, and Clifford algebra that underlies the mathematical structure of geometric algebra. It also presents points and lines in 3D as objects in 4D in the projective geometry framework; explores conformal geometry in 5D, which is the main ingredient of geometric algebra; and delves into the mathematical analysis of camera imaging geometry involving circles and spheres.
With useful historical notes and exercises, this book gives readers insight into the mathematical theories behind complicated geometric computations. It helps readers understand the foundation of today’s geometric algebra.
商品描述(中文翻譯)
《理解幾何代數:哈密頓、格拉斯曼與克利福德在電腦視覺與圖形學中的應用》介紹了幾何代數,重點在於哈密頓、格拉斯曼和克利福德的數學背景。它展示了如何描述和計算電腦圖形和電腦視覺中的3D建模應用的幾何。
與類似的書籍不同,本書首先分別描述各種代數,然後解釋它們如何結合以定義幾何代數的領域。書中從3D歐幾里得幾何開始,並討論如果使用非正交(斜)坐標系,幾何的描述將如何改變。文本重點在於哈密頓的四元數代數、格拉斯曼的外積代數,以及構成幾何代數數學結構的克利福德代數。它還將3D中的點和線作為4D中的物件呈現於射影幾何框架中;探索5D中的共形幾何,這是幾何代數的主要成分;並深入分析涉及圓和球的相機成像幾何的數學。
本書附有有用的歷史註解和練習,讓讀者深入了解複雜幾何計算背後的數學理論。它幫助讀者理解當今幾何代數的基礎。