Visualizing Quaternions
暫譯: 四元數可視化

Andrew J. Hanson

  • 出版商: Morgan Kaufmann
  • 出版日期: 2005-12-29
  • 售價: $3,780
  • 貴賓價: 9.5$3,591
  • 語言: 英文
  • 頁數: 530
  • 裝訂: Hardcover
  • ISBN: 0120884003
  • ISBN-13: 9780120884001
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Description

Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available.

The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important—a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions.

 

Table Of Contents

    ABOUT THE AUTHOR
    FOREWORD by Steve Cunningham
    PREFACE
    ACKNOWLEDGMENTS

    PART I ELEMENTS OF QUATERNIONS

      01 THE DISCOVERY OF QUATERNIONS
        1.1 Hamilton's Walk
        1.2 Then Came Octonions
        1.3 The Quaternion Revival

      02 FOLKLORE OF ROTATIONS
        2.1 The Belt Trick
        2.2 The Rolling Ball
        2.3 The Apollo 10 Gimbal-lock Incident
        2.4 3D Game Developer's Nightmare
        2.5 The Urban Legend of the Upside-down F16
        2.6 Quaternions to the Rescue

      03 BASIC NOTATION
        3.1 Vectors
        3.2 Length of a Vector
        3.3 3D Dot Product
        3.4 3D Cross Product
        3.5 Unit Vectors
        3.6 Spheres
        3.7 Matrices
        3.8 Complex Numbers

      04 WHAT ARE QUATERNIONS?

      05 ROAD MAP TO QUATERNION VISUALIZATION
        5.1 The Complex Number Connection
        5.2 The Cornerstones of Quaternion Visualization

      06 FUNDAMENTALS OF ROTATIONS
        6.1 2D Rotations
          6.1.1 Relation to Complex Numbers
          6.1.2 The Half-angle Form
          6.1.3 Complex Exponential Version
        6.2 Quaternions and 3D Rotations
          6.2.1 Construction
          6.2.2 Quaternions and Half Angles
          6.2.3 Double Values
        6.3 Recovering Θ and n
        6.4 Euler Angles and Quaternions
        6.5 † Optional Remarks
          6.5.1 † Connections to Group Theory
          6.5.2 † "Pure" Quaternion Derivation
          6.5.3 † Quaternion Exponential Version
        6.6 Conclusion

      07 VISUALIZING ALGEBRAIC STRUCTURE
        7.1 Algebra of Complex Numbers
          7.1.1 Complex Numbers
          7.1.2 Abstract View of Complex Multiplication
          7.1.3 Restriction to Unit-length Case
        7.2 Quaternion Algebra
          7.2.1 The Multiplication Rule
          7.2.2 Scalar Product
          7.2.3 Modulus of the Quaternion Product
          7.2.4 Preservation of the Unit Quaternions

      08 VISUALIZING SPHERES
        8.1 2D: Visualizing an Edge-on Circle
          8.1.1 Trigonometric Function Method
          8.1.2 Complex Variable Method
          8.1.3 Square Root Method
        8.2 The Square Root Method
        8.3 3D: Visualizing a Balloon
          8.3.1 Trigonometric Function Method
          8.3.2 Square Root Method
        8.4 4D: Visualizing Quaternion Geometry on S3
          8.4.1 Seeing the Parameters of a Single Quaternion
          8.4.2 Hemispheres in S3

      09 VISUALIZING LOGARITHMS AND EXPONENTIALS
        9.1 Complex Numbers
        9.2 Quaternions

      10 VISUALIZING INTERPOLATION METHODS
        10.1 Basics of Interpolation
          10.1.1 Interpolation Issues
          10.1.2 Gram-Schmidt Derivation of the SLERP
          10.1.3 † Alternative Derivation
        10.2 Quaternion Interpolation
        10.3 Equivalent 3×3 Matrix Method

      11 LOOKING AT ELEMENTARY QUATERNION FRAMES
        11.1 A Single Quaternion Frame
        11.2 Several Isolated Frames
        11.3 A Rotating Frame Sequence
        11.4 Synopsis

      12 QUATERNIONS AND THE BELT TRICK: CONNECTING TO THE IDENTITY
        12.1 Very Interesting, but Why?
          12.1.1 The Intuitive Answer
          12.1.2 † The Technical Answer
        12.2 The Details
        12.3 Frame-sequence Visualization Methods
          12.3.1 One Rotation
          12.3.2 Two Rotations
          12.3.3 Synopsis

      13 QUATERNIONS AND THE ROLLING BALL: EXPLOITING ORDER DEPENDENCE
        13.1 Order Dependence
        13.2 The Rolling Ball Controller
        13.3 Rolling Ball Quaternions
        13.4 † Commutators
        13.5 Three Degrees of Freedom From Two

      14 QUATERNIONS AND GIMBAL LOCK: LIMITING THE AVAILABLE SPACE
        14.1 Guidance System Suspension
        14.2 Mathematical Interpolation Singularities
        14.3 Quaternion Viewpoint

     

    PART II ADVANCED QUATERNION TOPICS

      15 ALTERNATIVE WAYS OF WRITING QUATERNIONS
        15.1 Hamilton's Generalization of Complex Numbers
        15.2 Pauli Matrices
        15.3 Other Matrix Forms

      16 EFFICIENCY AND COMPLEXITY ISSUES
        16.1 Extracting a Quaternion
          16.1.1 Positive Trace R
          16.1.2 Nonpositive Trace R
        16.2 Efficiency of Vector Operations

      17 ADVANCED SPHERE VISUALIZATION
        17.1 Projective Method
          17.1.1 The Circle S1
          17.1.2 General SN Polar Projection
        17.2 Distance-preserving Flattening Methods
          17.2.1 Unroll-and-Flatten S1
          17.2.2 S2 Flattened Equal-area Method
          17.2.3 S3 Flattened Equal-volume Method

      18 MORE ON LOGARITHMS AND EXPONENTIALS
        18.1 2D Rotations
        18.2 3D Rotations
        18.3 Using Logarithms for Quaternion Calculus
        18.4 Quaternion Interpolations Versus Log

      19 TWO-DIMENSIONAL CURVES
        19.1 Orientation Frames for 2D Space Curves
          19.1.1 2D Rotation Matrices
          19.1.2 The Frame Matrix in 2D
          19.1.3 Frame Evolution in 2D
        19.2 What Is a Map?
        19.3 Tangent and Normal Maps
        19.4 Square Root Form
          19.4.1 Frame Evolution in (a, b)
          19.4.2 Simplifying the Frame Equations

      20 THREE-DIMENSIONAL CURVES
        20.1 Introduction to 3D Space Curves
        20.2 General Curve Framings in 3D
        20.3 Tubing
        20.4 Classical Frames
          20.4.1 Frenet-Serret Frame
          20.4.2 Parallel Transport Frame
          20.4.3 Geodesic Reference Frame
          20.4.4 General Frames
        20.5 Mapping the Curvature and Torsion
        20.6 Theory of Quaternion Frames
          20.6.1 Generic Quaternion Frame Equations
          20.6.2 Quaternion Frenet Frames
          20.6.3 Quaternion Parallel Transport Frames
        20.7 Assigning Smooth Quaternion Frames
          20.7.1 Assigning Quaternions to Frenet Frames
          20.7.2 Assigning Quaternions to Parallel Transport Frames
        20.8 Examples: Torus Knot and Helix Quaternion Frames
        20.9 Comparison of Quaternion Frame Curve Lengths

      21 3D SURFACES
        21.1 Introduction to 3D Surfaces
          21.1.1 Classical Gauss Map
          21.1.2 Surface Frame Evolution
          21.1.3 Examples of Surface Framings
        21.2 Quaternion Weingarten Equations
          21.2.1 Quaternion Frame Equations
          21.2.2 Quaternion Surface Equations (Weingarten Equations)
        21.3 Quaternion Gauss Map
        21.4 Example: The Sphere
          21.4.1 Quaternion Maps of Alternative Sphere Frames
          21.4.2 Covering the Sphere and the Geodesic Reference Frame South Pole Singularity
        21.5 Examples: Minimal Surface Quaternion Maps

      22 OPTIMAL QUATERNION FRAMES
        22.1 Background
        22.2 Motivation
        22.3 Methodology
          22.3.1 The Space of Possible Frames
          22.3.2 Parallel Transport and Minimal Measure
        22.4 The Space of Frames
          22.4.1 Full Space of Curve Frames
          22.4.2 Full Space of Surface Maps
        22.5 Choosing Paths in Quaternion Space
          22.5.1 Optimal Path Choice Strategies
          22.5.2 General Remarks on Optimization in Quaternion Space
        22.6 Examples
          22.6.1 Minimal Quaternion Frames for Space Curves
          22.6.2 Minimal-quaternion-area Surface Patch Framings

      23 QUATERNION VOLUMES
        23.1 Three-degree-of-freedom Orientation Domains
        23.2 Application to the Shoulder Joint
        23.3 Data Acquisition and the Double-covering Problem
          23.3.1 Sequential Data
          23.3.2 The Sequential Nearest-neighbor Algorithm
          23.3.3 The Surface-based Nearest-neighbor Algorithm
          23.3.4 The Volume-based Nearest-neighbor Algorithm
        23.4 Application Data

      24 QUATERNION MAPS OF STREAMLINES
        24.1 Visualization Methods
          24.1.1 Direct Plot of Quaternion Frame Fields
          24.1.2 Similarity Measures for Quaternion Frames
          24.1.3 Exploiting or Ignoring Double Points
        24.2 3D Flow Data Visualizations
          24.2.1 AVS Streamline Example
          24.2.2 Deforming Solid Example
        24.3 Brushing: Clusters and Inverse Clusters
        24.4 Advanced Visualization Approaches
          24.4.1 3D Rotations of Quaternion Displays
          24.4.2 Probing Quaternion Frames with 4D Light

      25 QUATERNION INTERPOLATION
        25.1 Concepts of Euclidean Linear Interpolation
          25.1.1 Constructing Higher-order Polynomial Splines
          25.1.2 Matching
          25.1.3 Schlag's Method
          25.1.4 Control-point Method
        25.2 The Double Quad
        25.3 Direct Interpolation of 3D Rotations
          25.3.1 Relation to Quaternions
          25.3.2 Method for Arbitrary Origin
          25.3.3 Exponential Version
          25.3.4 Special Vector-Vector Case
          25.3.5 Multiple-level Interpolation Matrices
          25.3.6 Equivalence of Quaternion and Matrix Forms
        25.4 Quaternion Splines
        25.5 Quaternion de Casteljau Splines
        25.6 Equivalent Anchor Points
        25.7 Angular Velocity Control
        25.8 Exponential-map Quaternion Interpolation
        25.9 Global Minimal Acceleration Method
          25.9.1 Why a Cubic?
          25.9.2 Extension to Quaternion Form

      26 QUATERNION ROTATOR DYNAMICS
        26.1 Static Frame
        26.2 Torque
        26.3 Quaternion Angular Momentum

      27 CONCEPTS OF THE ROTATION GROUP
        27.1 Brief Introduction to Group Representations
          27.1.1 Complex Versus Real
          27.1.2 What Is a Representation?
        27.2 Basic Properties of Spherical Harmonics
          27.2.1 Representations and Rotation-invariant Properties
          27.2.2 Properties of Expansion Coefficients Under Rotations

      28 SPHERICAL RIEMANNIAN GEOMETRY
        28.1 Induced Metric on the Sphere
        28.2 Induced Metrics of Spheres
          28.2.1 S1 Induced Metrics
          28.2.2 S2 Induced Metrics
          28.2.3 S3 Induced Metrics
          28.2.4 Toroidal Coordinates on S3
          28.2.5 Axis-angle Coordinates on S3
          28.2.6 General Form for the Square-root Induced Metric
        28.3 Elements of Riemannian Geometry
        28.4 Riemann Curvature of Spheres
          28.4.1 S1
          28.4.2 S2
          28.4.3 S3
        28.5 Geodesics and Parallel Transport on the Sphere
        28.6 Embedded-vector Viewpoint of the Geodesics

     

    PART III BEYOND QUATERNIONS

      29 THE RELATIONSHIP OF 4D ROTATIONS TO QUATERNIONS
        29.1 What Happened in Three Dimensions
        29.2 Quaternions and Four Dimensions

      30 QUATERNIONS AND THE FOUR DIVISION ALGEBRAS
        30.1 Division Algebras
          30.1.1 The Number Systems with Dimensions 1, 2, 4, and 8
          30.1.2 Parallelizable Spheres
        30.2 Relation to Fiber Bundles
        30.3 Constructing the Hopf Fibrations
          30.3.1 Real: S0 fiber + S1 base = S1 bundle
          30.3.2 Complex: S1 fiber + S2 base = S3 bundle
          30.3.3 Quaternion: S3 fiber + S4 base = S7 bundle
          30.3.4 Octonion: S7 fiber + S8 base = S15 bundle

      31 CLIFFORD ALGEBRAS
        31.1 Introduction to Clifford Algebras
        31.2 Foundations
          31.2.1 Clifford Algebras and Rotations
          31.2.2 Higher-dimensional Clifford Algebra Rotations
        31.3 Examples of Clifford Algebras
          31.3.1 1D Clifford Algebra
          31.3.2 2D Clifford Algebra
          31.3.3 2D Rotations Done Right
          31.3.4 3D Clifford Algebra
          31.3.5 Clifford Implementation of 3D Rotations
        31.4 Higher Dimensions
        31.5 Pin(N), Spin(N), O(N), SO(N), and All That. . .

      32 CONCLUSIONS

      APPENDICES

        A NOTATION
        A.1 Vectors
        A.2 Length of a Vector
        A.3 Unit Vectors
        A.4 Polar Coordinates
        A.5 Spheres
        A.6 Matrix Transformations
        A.7 Features of Square Matrices
        A.8 Orthogonal Matrices
        A.9 Vector Products
          A.9.1 2D Dot Product
          A.9.2 2D Cross Product
          A.9.3 3D Dot Product
          A.9.4 3D Cross Product
        A.10 Complex Variables

        B 2D COMPLEX FRAMES

        C 3D QUATERNION FRAMES
          C.1 Unit Norm
          C.2 Multiplication Rule
          C.3 Mapping to 3D rotations
          C.4 Rotation Correspondence
          C.5 Quaternion Exponential Form

        D FRAME AND SURFACE EVOLUTION
          D.1 Quaternion Frame Evolution
          D.2 Quaternion Surface Evolution

        E QUATERNION SURVIVAL KIT

        F QUATERNION METHODS
          F.1 Quaternion Logarithms and Exponentials
          F.2 The Quaternion Square Root Trick
          F.3 The ab formula simplified
          F.4 Gram-Schmidt Spherical Interpolation
          F.5 Direct Solution for Spherical Interpolation
          F.6 Converting Linear Algebra to Quaternion Algebra
          F.7 Useful Tensor Methods and Identities
            F.7.1 Einstein Summation Convention
            F.7.2 Kronecker Delta
            F.7.3 Levi-Civita Symbol

        G QUATERNION PATH OPTIMIZATION USING SURFACE EVOLVER

        H QUATERNION FRAME INTEGRATION

        I HYPERSPHERICAL GEOMETRY
          I.1 Definitions
          I.2 Metric Properties

      REFERENCES
      INDEX

商品描述(中文翻譯)

描述

四元數於160年前被引入,旨在將複數推廣至更高維度,現在被認為是現代計算機圖形學中最重要的概念之一。它們提供了一種強大的方式來表示旋轉,與旋轉矩陣相比,它們佔用更少的內存,組合速度更快,並且自然適合高效的旋轉插值。儘管如此,許多從業者因為理解四元數所需的數學而避免使用它們,希望有一天能有更直觀的描述出現。

等待已經結束。Andrew Hanson的新書提供了對四元數的新視角。書的第一部分專注於可視化四元數,以提供使用它們所需的直覺,並包含許多示例來說明它們的重要性——這是對那些希望探索四元數而不受其數學方面困擾的人的美好介紹。第二部分涵蓋了所有重要的高級應用,包括四元數曲線、表面和體積。最後,對於那些想要了解四元數背後數學的完整故事的人,書中有對其四維特性和Clifford代數的溫和介紹,這是向量和四元數的全方位框架。

目錄

關於作者
前言 由 Steve Cunningham
序言
致謝

第一部分 四元數的基本元素
01 四元數的發現
1.1 哈密頓的步行
1.2 然後出現了八元數
1.3 四元數的復興

02 旋轉的民間傳說
2.1 腰帶把戲
2.2 滾動的球
2.3 阿波羅10號的萬向節鎖定事件
2.4 3D遊戲開發者的噩夢
2.5 倒立F16的都市傳說
2.6 四元數的救援

03 基本符號
3.1 向量
3.2 向量的長度
3.3 3D點積
3.4 3D叉積
3.5 單位向量
3.6 球體
3.7 矩陣
3.8 複數

04 四元數是什麼?

05 四元數可視化的路線圖
5.1 複數的聯繫
5.2 四元數可視化的基石

06 旋轉的基本原理
6.1 2D旋轉
6.1.1 與複數的關係
6.1.2 半角形式
6.1.3 複數指數版本
6.2 四元數與3D旋轉
6.2.1 構造
6.2.2 四元數與半角
6.2.3 雙值
6.3 恢復Θ和n
6.4 歐拉角與四元數
6.5 † 可選備註
6.5.1 † 與群論的聯繫
6.5.2 † '純'四元數推導
6.5.3 † 四元數指數版本
6.6 結論

07 可視化代數結構
7.1 複數的代數
7.1.1 複數
7.1.2 複數乘法的抽象視圖
7.1.3 限制到單位長度情況
7.2 四元數代數
7.2.1 乘法規則
7.2.2 標量乘積
7.2.3 四元數乘積的模
7.2.4 單位四元數的保持

08 可視化球體
8.1 2D:可視化邊緣圓
8.1.1 三角函數方法
8.1.2 複變數方法
8.1.3 平方根方法
8.2 平方根方法
8.3 3D:可視化氣球
8.3.1 三角函數方法
8.3.2 平方根方法
8.4 4D:可視化四元數幾何在S^3上
8.4.1 看到單一四元數的參數
8.4.2 S^3中的半球

09 可視化對數和指數
9.1 複數
9.2 四元數

10 可視化插值方法
10.1 插值的基本知識
10.1.1 插值問題
10.1.2 Gram-Schmidt推導SLERP
10.1.3 † 替代推導
10.2 四元數插值
10.3 等效的3×3矩陣方法

11 觀察基本四元數框架
11.1 單一四元數框架
11.2 幾個孤立框架
11.3 旋轉框架序列
11.4 概述

12 四元數與腰帶把戲:連接到身份
12.1 非常有趣,但為什麼?
12.1.1 直觀的答案
12.1.2 † 技術答案
12.2 詳情
12.3 框架序列可視化方法
12.3.1 一次旋轉
12.3.2 兩次旋轉
12.3.3 概述

13 四元數與滾動球:利用順序依賴性
13.1 順序依賴性
13.2 滾動球控制器
13.3 滾動球四元數
13.4 † 交換子
13.5 從兩個中獲得三個自由度

14 四元數與萬向節鎖定:限制可用空間
14.1 導航系統懸掛
14.2 數學插值奇異性
14.3 四元數視角

第二部分 高級四元數主題
15 書寫四元數的替代方法
15.1 哈密頓對複數的概括
15.2 保利矩陣
15.3 其他矩陣形式

16 效率與複雜性問題
16.1 提取四元數
16.1.1 正跡R
16.1.2 非正跡R
16.2 向量運算的效率

17 高級球體可視化
17.1 專案方法
17.1.1 圓S^1
17.1.2 一般S^N極坐標投影
17.2 保持距離的展平方法
17.2.1 展開和平坦化S^1
17.2.2 S^2展平的等面積方法
17.2.3 S^3展平的等體積方法

18 更多關於對數和指數
18.1 2D旋轉
18.2 3D旋轉
18.3 使用對數進行四元數微積分
18.4 四元數插值與對數的比較

19 二維曲線
19.1 2D空間曲線的方向框架
19.1.1 2D旋轉矩陣
19.1.2 2D中的框架矩陣
19.1.3 2D中的框架演變
19.2 什麼是映射?
19.3 切線和法線映射
19.4 平方根形式
19.4.1 在(a, b)中的框架演變
19.4.2 簡化框架方程

20 三維曲線
20.1 3D空間曲線的介紹
20.2 3D中的一般曲線框架
20.3 管道
20.4 古典框架
20.4.1 Frenet-Serret框架
20.4.2 平行運輸框架
20.4.3 測地參考框架
20.4.4 一般框架
20.5 映射曲率和扭率
20.6 四元數框架理論
20.6.1 一般四元數框架方程
20.6.2 四元數Frenet框架
20.6.3 四元數平行運輸框架
20.7 指派平滑的四元數框架
20.7.1 將四元數指派給Frenet框架
20.7.2 將四元數指派給平行運輸框架
20.8 例子:環結和螺旋四元數框架
20.9 四元數框架曲線長度的比較

21 3D表面
21.1 3D表面的介紹
21.1.1 古典高斯映射
21.1.2 表面框架演變
21.1.3 表面框架的例子
21.2 四元數Weingarten方程
21.2.1 四元數框架方程
21.2.2 四元數表面方程(Weingarten方程)
21.3 四元數高斯映射
21.4 例子:球體
21.4.1 替代球體框架的四元數映射
21.4.2 覆蓋球體和測地參考框架南極奇異性
21.5 例子:最小表面四元數映射

22 最優四元數框架
22.1 背景
22.2 動機
22.3 方法論
22.3.1 可能框架的空間
22.3.2 平行運輸和最小度量
22.4 框架的空間
22.4.1 曲線框架的完整空間
22.4.2 表面映射的完整空間
22.5 在四元數空間中選擇路徑
22.5.1 最優路徑選擇策略
22.5.2 四元數空間優化的一般備註
22.6 例子
22.6.1 空間曲線的最小四元數框架
22.6.2 最小四元數面積的表面補丁框架

23 四元數體積
23.1 三自由度方向域
23.2 應用於肩關節
23.3 數據獲取和雙重覆蓋問題
23.3.1 順序數據
23.3.2 順序最近鄰算法
23.3.3 基於表面的最近鄰算法
23.3.4 基於體積的最近鄰算法
23.4 應用數據

24 四元數流線映射
24.1 可視化方法
24.1.1 四元數框架場的直接繪製
24.1.2 四元數框架的相似性度量
24.1.3 利用或忽略雙點
24.2 3D流動數據可視化
24.2.1 AVS流線示例
24.2.2 變形固體示例
24.3 刷新:集群和逆集群
24.4 高級可視化方法
24.4.1 四元數顯示的3D旋轉
24.4.2 用4D光探測四元數框架

25 四元數插值
25.1 歐幾里得線性插值的概念
25.1.1 構建高階多項式樣條
25.1.2 匹配
25.1.3 Schlag的方法
25.1.4 控制點方法
25.2 雙四邊形
25.3 3D旋轉的直接插值
25.3.1 與四元數的關係
25.3.2 任意原點的方法
25.3.3 指數版本
25.3.4 特殊向量-向量情況
25.3.5 多層插值矩陣
25.3.6 四元數和矩陣形式的等價性
25.4 四元數樣條
25.5 四元數 de Casteljau樣條
25.6 等效的錨點
25.7 角速度控制
25.8 指數映射四元數插值
25.9 全局最小加速度方法
25.9.1 為什麼是三次?
25.9.2 擴展到四元數形式

26 四元數旋轉器動力學