Geometric Algebra for Computer Science :An Object-Oriented Approach to Geometry (Hardcover)
暫譯: 計算機科學的幾何代數:面向對象的幾何方法 (精裝版)
Leo Dorst, Daniel Fontijne, Stephen Mann
- 出版商: Morgan Kaufmann
- 出版日期: 2009-03-01
- 售價: $3,920
- 貴賓價: 9.5 折 $3,724
- 語言: 英文
- 頁數: 664
- 裝訂: Hardcover
- ISBN: 0123749425
- ISBN-13: 9780123749420
-
相關分類:
Object-oriented、Computer-Science
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$980$980 -
$880$695 -
$990$891 -
$980$774 -
$620$490 -
$650$507 -
$580$458 -
$780$515 -
$2,610$2,480 -
$620$527 -
$580$383 -
$860$731 -
$750$593 -
$520$442 -
$500$425 -
$520$442 -
$890$703 -
$750$495 -
$450$351 -
$590$466 -
$450$383 -
$590$466 -
$650$553 -
$480$384 -
$950$751
相關主題
商品描述
Until recently, all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down.
- Explains GA as a natural extension of linear algebra and conveys its significance for 3D programming of geometry in graphics, vision, and robotics.
- Systematically explores the concepts and techniques that are key to representing elementary objects and geometric operators using GA.
- Covers in detail the conformal model, a convenient way to implement 3D geometry using a 5D representation space.
- Presents effective approaches to making GA an integral part of your programming.
- Includes numerous drills and programming exercises helpful for both students and practitioners.
- Companion web site includes links to GAViewer, a program that will allow you to interact with many of the 3D figures in the book, and Gaigen 2, the platform for the instructive programming exercises that conclude each chapter.
商品描述(中文翻譯)
直到最近,虛擬 3D 世界中物件之間的所有互動都是基於使用線性代數進行的計算。然而,線性代數在很大程度上依賴於坐標,這使得許多幾何編程任務變得非常具體和複雜——通常需要付出大量的努力才能實現即使是適度的性能提升。雖然線性代數是一種有效的方式來指定低層次的計算,但它並不是幾何編程的合適高層次語言。《計算機科學的幾何代數》提供了一個引人注目的替代方案,以克服線性代數的限制。幾何代數(Geometric Algebra,簡稱 GA)是一種緊湊、高效且能提升性能的方式,用於在計算機程序中表示 3D 物件的幾何形狀。在本書中,您將找到 GA 的介紹,這將使您對其與線性代數的關係及其對您工作的意義有深入的理解。您將學習如何使用 GA 來表示物件並對其執行幾何操作。您還將開始掌握將 GA 成為您應用程式不可或缺的一部分的有效技術,這樣可以簡化您的代碼而不會降低其速度。
- 解釋 GA 作為線性代數的自然擴展,並傳達其在圖形、視覺和機器人學中 3D 幾何編程的重要性。
- 系統地探討使用 GA 表示基本物件和幾何運算子所需的概念和技術。
- 詳細介紹共形模型,這是一種使用 5D 表示空間來實現 3D 幾何的方便方法。
- 提出有效的方法,使 GA 成為您編程的不可或缺的一部分。
- 包含大量的練習和編程練習,對學生和從業者都很有幫助。
- 附屬網站包括 GAViewer 的鏈接,這是一個允許您與書中許多 3D 圖形互動的程序,以及 Gaigen 2,這是每章結尾的教學編程練習的平台。