Imaginary Mathematics for Computer Science
暫譯: 計算機科學的虛擬數學

John Vince

  • 出版商: Springer
  • 出版日期: 2018-08-30
  • 售價: $3,520
  • 貴賓價: 9.5$3,344
  • 語言: 英文
  • 頁數: 301
  • 裝訂: Hardcover
  • ISBN: 3319946366
  • ISBN-13: 9783319946368
  • 相關分類: Computer-Science
  • 海外代購書籍(需單獨結帳)

商品描述

The imaginary unit i = √-1 has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, René Descartes referred to it as “imaginary”, and the use of the term “complex number” compounded the unnecessary mystery associated with this amazing object. Today, i = √-1 has found its way into virtually every branch of mathematics, and is widely employed in physics and science, from solving problems in electrical engineering to quantum field theory.

John Vince describes the evolution of the imaginary unit from the roots of quadratic and cubic equations, Hamilton’s quaternions, Cayley’s octonions, to Grassmann’s geometric algebra. In spite of the aura of mystery that surrounds the subject, John Vince makes the subject accessible and very readable. 

The first two chapters cover the imaginary unit and its integration with real numbers. Chapter 3 describes how complex numbers work with matrices, and shows how to compute complex eigenvalues and eigenvectors. Chapters 4 and 5 cover Hamilton’s invention of quaternions, and Cayley’s development of octonions, respectively. Chapter 6 provides a brief introduction to geometric algebra, which possesses many of the imaginary qualities of quaternions, but works in space of any dimension. The second half of the book is devoted to applications of complex numbers, quaternions and geometric algebra. John Vince explains how complex numbers simplify trigonometric identities, wave combinations and phase differences in circuit analysis, and how geometric algebra resolves geometric problems, and quaternions rotate 3D vectors. There are two short chapters on the Riemann hypothesis and the Mandelbrot set, both of which use complex numbers. The last chapter references the role of complex numbers in quantum mechanics, and ends with Schrödinger’s famous wave equation. 

Filled with lots of clear examples and useful illustrations, this compact book provides an excellent introduction to imaginary mathematics for computer science.

商品描述(中文翻譯)

虛數單位 i = √-1 已被數學家使用近五百年,其物理意義一直是一個持續的挑戰。不幸的是,勒內·笛卡爾(René Descartes)將其稱為「虛數」,而「複數」這一術語的使用更是加深了這一驚人對象所帶來的不必要神秘感。如今,i = √-1 幾乎已經滲透到數學的每一個分支,並廣泛應用於物理和科學領域,從解決電氣工程中的問題到量子場論。

約翰·文斯(John Vince)描述了虛數單位從二次方程和三次方程的根、哈密頓的四元數、凱利的八元數到格拉斯曼的幾何代數的演變。儘管這個主題圍繞著神秘的光環,約翰·文斯使這個主題變得易於理解且非常可讀。

前兩章涵蓋了虛數單位及其與實數的整合。第三章描述了複數如何與矩陣一起運作,並展示了如何計算複特徵值和特徵向量。第四章和第五章分別涵蓋了哈密頓的四元數發明和凱利的八元數發展。第六章簡要介紹了幾何代數,這種代數擁有許多四元數的虛數特性,但可以在任意維度的空間中運作。本書的後半部分專注於複數、四元數和幾何代數的應用。約翰·文斯解釋了複數如何簡化三角恆等式、波的組合和電路分析中的相位差,以及幾何代數如何解決幾何問題,四元數如何旋轉三維向量。書中還有兩個短章節探討黎曼假設和曼德布羅特集,這兩者都使用了複數。最後一章提到複數在量子力學中的角色,並以薛丁格(Schrödinger)著名的波動方程結束。

這本內容充實、例子清晰且插圖實用的簡明書籍,為計算機科學提供了虛數數學的優秀入門。