Introduction to Machine Learning with Python: A Guide for Data Scientists (Paperback)
暫譯: 使用 Python 的機器學習入門:數據科學家的指南 (平裝本)

Andreas C. Müller, Sarah Guido

買這商品的人也買了...

相關主題

商品描述

Description

Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.

You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.

With this book, you’ll learn:

  • Fundamental concepts and applications of machine learning
  • Advantages and shortcomings of widely used machine learning algorithms
  • How to represent data processed by machine learning, including which data aspects to focus on
  • Advanced methods for model evaluation and parameter tuning
  • The concept of pipelines for chaining models and encapsulating your workflow
  • Methods for working with text data, including text-specific processing techniques
  • Suggestions for improving your machine learning and data science skills

商品描述(中文翻譯)

描述

機器學習已成為許多商業應用和研究項目的不可或缺的一部分,但這個領域並不僅限於擁有龐大研究團隊的大公司。如果您使用 Python,即使是初學者,本書將教您實用的方法來構建自己的機器學習解決方案。隨著當今可用數據的增多,機器學習應用的限制僅在於您的想像力。

您將學習使用 Python 和 scikit-learn 庫創建成功的機器學習應用所需的步驟。作者 Andreas Müller 和 Sarah Guido 專注於使用機器學習算法的實際方面,而不是其背後的數學。熟悉 NumPy 和 matplotlib 庫將幫助您從本書中獲得更多收益。

通過本書,您將學習:

- 機器學習的基本概念和應用
- 廣泛使用的機器學習算法的優勢和缺點
- 如何表示機器學習處理的數據,包括應該關注的數據方面
- 模型評估和參數調整的進階方法
- 用於鏈接模型和封裝工作流程的管道概念
- 處理文本數據的方法,包括特定於文本的處理技術
- 改進您的機器學習和數據科學技能的建議