Doing Data Science: Straight Talk from the Frontline (Paperback)
暫譯: 數據科學實務:前線的直言不諱
Cathy O'Neil, Rachel Schutt
- 出版商: O'Reilly
- 出版日期: 2013-12-03
- 定價: $1,980
- 售價: 9.5 折 $1,881
- 語言: 英文
- 頁數: 408
- 裝訂: Paperback
- ISBN: 1449358659
- ISBN-13: 9781449358655
-
相關分類:
Data Science
-
相關翻譯:
數據科學實戰 (Doing Data Science) (簡中版)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$1,558Introduction to Algorithms, 3/e (IE-Paperback)
-
$680$537 -
$825R Cookbook (Paperback)
-
$780$616 -
$780$616 -
$825R Graphics Cookbook (Paperback)
-
$1,130$893 -
$400$380 -
$420$332 -
$580$493 -
$940$700 -
$480$379 -
$480$379 -
$788Mining the Social Web, 2E
-
$680$537 -
$320$272 -
$2,240An Introduction to Statistical Learning: With Applications in R (Hardcover)
-
$560$437 -
$780$616 -
$2,510$2,385 -
$780$616 -
$360$284 -
$450$356 -
$620$484 -
$580$568
商品描述
Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.
In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.
Topics include:
- Statistical inference, exploratory data analysis, and the data science process
- Algorithms
- Spam filters, Naive Bayes, and data wrangling
- Logistic regression
- Financial modeling
- Recommendation engines and causality
- Data visualization
- Social networks and data journalism
- Data engineering, MapReduce, Pregel, and Hadoop
Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
商品描述(中文翻譯)
現在人們已經意識到數據可以在選舉或商業模式中產生差異,因此數據科學作為一種職業正在逐漸受到重視。但在這個充滿炒作的廣泛跨學科領域中,您該如何開始工作呢?這本基於哥倫比亞大學數據科學入門課程的深刻書籍告訴您所需了解的內容。
在這些長達一章的講座中,來自 Google、Microsoft 和 eBay 等公司的數據科學家分享新的算法、方法和模型,通過案例研究和他們使用的代碼進行展示。如果您熟悉線性代數、概率和統計,並且有編程經驗,這本書是數據科學的理想入門書籍。
主題包括:
- 統計推斷、探索性數據分析和數據科學過程
- 算法
- 垃圾郵件過濾器、朴素貝葉斯和數據處理
- 邏輯回歸
- 財務建模
- 推薦引擎和因果關係
- 數據可視化
- 社交網絡和數據新聞
- 數據工程、MapReduce、Pregel 和 Hadoop
《Doing Data Science》是課程講師 Rachel Schutt(News Corp 數據科學高級副總裁)與數據科學顧問 Cathy O’Neil(Johnson Research Labs 的高級數據科學家)之間的合作,Cathy 參加了課程並撰寫了相關博客。