Fast Data Processing with Spark 2 - Third Edition
暫譯: 快速數據處理與 Spark 2 - 第三版
Krishna Sankar
- 出版商: Packt Publishing
- 出版日期: 2016-10-21
- 定價: $1,330
- 售價: 9.0 折 $1,197
- 語言: 英文
- 頁數: 274
- 裝訂: Paperback
- ISBN: 1785889273
- ISBN-13: 9781785889271
-
相關分類:
Spark
立即出貨 (庫存=1)
買這商品的人也買了...
商品描述
Key Features
- A quick way to get started with Spark – and reap the rewards
- From analytics to engineering your big data architecture, we’ve got it covered
- Bring your Scala and Java knowledge – and put it to work on new and exciting problems
Book Description
When people want a way to process big data at speed, Spark is invariably the solution. With its ease of development (in comparison to the relative complexity of Hadoop), it’s unsurprising that it’s becoming popular with data analysts and engineers everywhere.
Beginning with the fundamentals, we’ll show you how to get set up with Spark with minimum fuss. You’ll then get to grips with some simple APIs before investigating machine learning and graph processing – throughout we’ll make sure you know exactly how to apply your knowledge.
You will also learn how to use the Spark shell, how to load data before finding out how to build and run your own Spark applications. Discover how to manipulate your RDD and get stuck into a range of DataFrame APIs. As if that’s not enough, you’ll also learn some useful Machine Learning algorithms with the help of Spark MLlib and integrating Spark with R. We’ll also make sure you’re confident and prepared for graph processing, as you learn more about the GraphX API.
What you will learn
- Install and set up Spark in your cluster
- Prototype distributed applications with Spark's interactive shell
- Perform data wrangling using the new DataFrame APIs
- Get to know the different ways to interact with Spark's distributed representation of data (RDDs)
- Query Spark with a SQL-like query syntax
- See how Spark works with big data
- Implement machine learning systems with highly scalable algorithms
- Use R, the popular statistical language, to work with Spark
- Apply interesting graph algorithms and graph processing with GraphX
About the Author
Krishna Sankar is a Senior Specialist—AI Data Scientist with Volvo Cars focusing on Autonomous Vehicles. His earlier stints include Chief Data Scientist at http://cadenttech.tv/, Principal Architect/Data Scientist at Tata America Intl. Corp., Director of Data Science at a bioinformatics startup, and as a Distinguished Engineer at Cisco. He has been speaking at various conferences including ML tutorials at Strata SJC and London 2016, Spark Summit [goo.gl/ab30lD], Strata-Spark Camp, OSCON, PyCon, and PyData, writes about Robots Rules of Order [goo.gl/5yyRv6], Big Data Analytics—Best of the Worst [goo.gl/ImWCaz], predicting NFL, Spark [http://goo.gl/E4kqMD], Data Science [http://goo.gl/9pyJMH], Machine Learning [http://goo.gl/SXF53n], Social Media Analysis [http://goo.gl/D9YpVQ] as well as has been a guest lecturer at the Naval Postgraduate School. His occasional blogs can be found at https://doubleclix.wordpress.com/. His other passion is flying drones (working towards Drone Pilot License (FAA UAS Pilot) and Lego Robotics—you will find him at the St.Louis FLL World Competition as Robots Design Judge.
Table of Contents
- Installing Spark and Setting Up Your Cluster
- Using the Spark Shell
- Building and Running a Spark Application
- Creating a SparkSession Object
- Loading and Saving Data in Spark
- Manipulating Your RDD
- Spark 2.0 Concepts
- Spark SQL
- Foundations of Datasets/DataFrames – The Proverbial Workhorse for DataScientists
- Spark with Big Data
- Machine Learning with Spark ML Pipelines
- GraphX
商品描述(中文翻譯)
**主要特點**
- 快速開始使用 Spark,並獲得回報
- 從分析到工程化您的大數據架構,我們都涵蓋了
- 帶上您的 Scala 和 Java 知識,並將其應用於新的有趣問題
**書籍描述**
當人們想要快速處理大數據時,Spark 總是解決方案。由於其開發的簡易性(相較於 Hadoop 的相對複雜性),它在數據分析師和工程師中變得越來越受歡迎也就不足為奇了。
從基礎開始,我們將向您展示如何以最小的麻煩設置 Spark。然後,您將掌握一些簡單的 API,接著探索機器學習和圖形處理——在整個過程中,我們將確保您確切知道如何應用您的知識。
您還將學習如何使用 Spark shell,如何加載數據,然後了解如何構建和運行自己的 Spark 應用程序。發現如何操作您的 RDD,並深入了解各種 DataFrame API。若這還不夠,您還將在 Spark MLlib 的幫助下學習一些有用的機器學習算法,並將 Spark 與 R 整合。我們還將確保您對圖形處理充滿信心並做好準備,因為您將學習更多有關 GraphX API 的內容。
**您將學到的內容**
- 在您的集群中安裝和設置 Spark
- 使用 Spark 的互動式 shell 原型分佈式應用程序
- 使用新的 DataFrame API 進行數據處理
- 了解與 Spark 的分佈式數據表示(RDDs)互動的不同方式
- 使用類似 SQL 的查詢語法查詢 Spark
- 了解 Spark 如何處理大數據
- 使用高度可擴展的算法實現機器學習系統
- 使用流行的統計語言 R 與 Spark 進行工作
- 應用有趣的圖算法和使用 GraphX 進行圖形處理
**關於作者**
**Krishna Sankar** 是 Volvo Cars 的高級專家——AI 數據科學家,專注於自動駕駛汽車。他之前的工作包括 http://cadenttech.tv/ 的首席數據科學家、Tata America Intl. Corp. 的首席架構師/數據科學家、生物信息學初創公司的數據科學總監,以及 Cisco 的傑出工程師。他曾在各種會議上發言,包括 2016 年 Strata SJC 和倫敦的 ML 教程、Spark Summit [goo.gl/ab30lD]、Strata-Spark Camp、OSCON、PyCon 和 PyData,並撰寫有關《機器人規則的秩序》[goo.gl/5yyRv6]、《大數據分析——最糟糕的最佳》[goo.gl/ImWCaz]、預測 NFL、Spark [http://goo.gl/E4kqMD]、數據科學 [http://goo.gl/9pyJMH]、機器學習 [http://goo.gl/SXF53n]、社交媒體分析 [http://goo.gl/D9YpVQ] 的文章,並曾在海軍研究生院擔任客座講師。他的偶爾博客可以在 https://doubleclix.wordpress.com/ 找到。他的另一個熱情是飛行無人機(正在努力獲得無人機駕駛執照(FAA UAS Pilot))和樂高機器人——您會在聖路易斯 FLL 世界競賽中找到他,擔任機器人設計評審。
**目錄**
1. 安裝 Spark 和設置您的集群
2. 使用 Spark Shell
3. 構建和運行 Spark 應用程序
4. 創建 SparkSession 對象
5. 在 Spark 中加載和保存數據
6. 操作您的 RDD
7. Spark 2.0 概念
8. Spark SQL
9. 數據集/DataFrames 的基礎——數據科學家的典型工作馬
10. Spark 與大數據
11. 使用 Spark ML 管道進行機器學習
12. GraphX