Data Mining and Machine Learning in Cybersecurity (Hardcover)
暫譯: 網路安全中的資料探勘與機器學習 (精裝版)
Sumeet Dua, Xian Du
- 出版商: Auerbach Publication
- 出版日期: 2011-04-25
- 售價: $3,500
- 貴賓價: 9.5 折 $3,325
- 語言: 英文
- 頁數: 256
- 裝訂: Hardcover
- ISBN: 1439839425
- ISBN-13: 9781439839423
-
相關分類:
Machine Learning、Data-mining、資訊安全
立即出貨 (庫存=1)
買這商品的人也買了...
-
$880$695 -
$620$527 -
$820$648 -
$580$458 -
$680$537 -
$850$723 -
$750$593 -
$950$808 -
$580$458 -
$1,350Component Software: Beyond Object-Oriented Programming, 2/e (Paperback)
-
$750$713 -
$299iPad in the Enterprise: Developing and Deploying Business Applications (Paperback)
-
$560$437 -
$490$387 -
$480$379 -
$780$616 -
$880$686 -
$560$476 -
$360$284 -
$680$612 -
$980$882 -
$520$411 -
$550$468 -
$520$411 -
$480$379
商品描述
With the rapid advancement of information discovery techniques, machine learning and data mining continue to play a significant role in cybersecurity. Although several conferences, workshops, and journals focus on the fragmented research topics in this area, there has been no single interdisciplinary resource on past and current works and possible paths for future research in this area. This book fills this need.
From basic concepts in machine learning and data mining to advanced problems in the machine learning domain, Data Mining and Machine Learning in Cybersecurity provides a unified reference for specific machine learning solutions to cybersecurity problems. It supplies a foundation in cybersecurity fundamentals and surveys contemporary challenges—detailing cutting-edge machine learning and data mining techniques. It also:
- Unveils cutting-edge techniques for detecting new attacks
- Contains in-depth discussions of machine learning solutions to detection problems
- Categorizes methods for detecting, scanning, and profiling intrusions and anomalies
- Surveys contemporary cybersecurity problems and unveils state-of-the-art machine learning and data mining solutions
- Details privacy-preserving data mining methods
This interdisciplinary resource includes technique review tables that allow for speedy access to common cybersecurity problems and associated data mining methods. Numerous illustrative figures help readers visualize the workflow of complex techniques and more than forty case studies provide a clear understanding of the design and application of data mining and machine learning techniques in cybersecurity.
商品描述(中文翻譯)
隨著資訊發現技術的快速進步,機器學習和資料探勘在網路安全中持續扮演重要角色。儘管有多個會議、研討會和期刊專注於該領域的零散研究主題,但目前尚未有單一的跨學科資源來彙整過去和現在的研究成果以及未來研究的可能方向。本書填補了這一需求。
從機器學習和資料探勘的基本概念到機器學習領域的進階問題,《網路安全中的資料探勘與機器學習》提供了一個針對網路安全問題的具體機器學習解決方案的統一參考。它提供了網路安全基礎的基礎知識,並調查當前的挑戰—詳細介紹尖端的機器學習和資料探勘技術。它還:
- 揭示檢測新攻擊的尖端技術
- 包含對檢測問題的機器學習解決方案的深入討論
- 將檢測、掃描和分析入侵及異常的方法進行分類
- 調查當前的網路安全問題並揭示最先進的機器學習和資料探勘解決方案
- 詳細介紹隱私保護的資料探勘方法
這本跨學科資源包括技術回顧表,允許快速訪問常見的網路安全問題及相關的資料探勘方法。眾多插圖幫助讀者可視化複雜技術的工作流程,並且超過四十個案例研究提供了對資料探勘和機器學習技術在網路安全中設計與應用的清晰理解。