Probabilistic Foundations of Statistical Network Analysis (Chapman & Hall/CRC Monographs on Statistics & Applied Probability)
暫譯: 統計網絡分析的概率基礎(查普曼與霍爾/CRC統計與應用概率專著)

Harry Crane

買這商品的人也買了...

商品描述

Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks.

 

The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics.

 

Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE.

 

 

 

 

 

 

 

商品描述(中文翻譯)

《統計網路分析的機率基礎》提供了對現代網路分析基本原則和主要挑戰的新穎且深刻的見解。其清晰的闡述為理解可交換和動態網路模型、網路抽樣以及網路統計(如稀疏性和冪律)等基本概念提供了必要的背景,這些概念在當代數據科學和機器學習應用中扮演著核心角色。本書使讀者能夠清楚且直觀地理解統計推斷的基本原則、網路數據的經驗特性以及來自機率論的技術概念之間的微妙相互作用。其數學上嚴謹但不過於技術性的闡述,使本書對專業數據科學家、統計學家和計算機科學家,以及實務工作者和各領域的研究人員都易於理解。新手和非定量研究者將發現其概念性方法對於培養對統計和機率技術概念的直覺非常有價值,而專家和研究生則會發現本書是涵蓋邊緣可交換性、相對可交換性、圖形模型(graphon)和圖形值的 Levy 過程及動態網路的重連模型等新主題的便利參考資料。

作者的犀利評論補充了這些核心概念,挑戰讀者超越這一新興學科的當前限制。以易於理解的方式闡述,並提供超過50個開放的研究問題和附有解答的練習題,本書非常適合對現代網路分析、數據科學、機器學習和統計感興趣的高年級本科生和研究生。

Harry Crane 是羅格斯大學統計與生物統計研究所的副教授及研究生課程共同主任,並且是哲學研究所研究生教員的副成員。Crane 教授的研究興趣涵蓋網路科學、機率論、統計推斷和數學邏輯等多個數學和應用主題。除了在邊緣和關係可交換性、相對可交換性以及圖形值的馬可夫過程方面的技術工作外,Crane 教授的方法也被應用於外政策研究所和 RAND 的空軍計畫中的特定領域的網路安全和反恐問題。