Chain Event Graphs (Chapman & Hall/CRC Computer Science & Data Analysis)
暫譯: 鏈事件圖(Chapman & Hall/CRC 電腦科學與數據分析)
Rodrigo A. Collazo, Christiane Goergen, Jim Q. Smith
- 出版商: CRC
- 出版日期: 2018-02-05
- 語言: 英文
- 頁數: 234
- 裝訂: Digital
- ISBN: 1498729614
- ISBN-13: 9781498729611
-
相關分類:
Data Science、Computer-Science
無法訂購
商品描述
ã Written by some major contributors to the development of this class of graphical models, Chain Event Graphs introduces a viable and straightforward new tool for statistical inference, model selection and learning techniques. The book extends established technologies used in the study of discrete Bayesian Networks so that they apply in a much more general setting As the first book on Chain Event Graphs, this monograph is expected to become a landmark work on the use of event trees and coloured probability trees in statistics, and to lead to the increased use of such tree models to describe hypotheses about how events might unfold. Features: introduces a new and exciting discrete graphical model based on an event tree focusses on illustrating inferential techniques, making its methodology accessible to a very broad audience and, most importantly, to practitioners illustrated by a wide range of examples, encompassing important present and future applications includes exercises to test comprehension and can easily be used as a course book introduces relevant software packages Rodrigo A. Collazo is a methodological and computational statistician based at the Naval Systems Analysis Centre (CASNAV) in Rio de Janeiro, Brazil. Christiane Goergen is a mathematical statistician at the Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany. Jim Q. Smith is a professor of statistics at the University of Warwick, UK. He has published widely in the field of statistics, AI, and decision analysis and has written two other books, most recently Bayesian Decision Analysis: Principles and Practice (Cambridge University Press 2010).
商品描述(中文翻譯)
《鏈事件圖》是由一些主要貢獻者撰寫的,這些貢獻者在這類圖形模型的發展中扮演了重要角色。本書介紹了一種可行且簡單的新工具,用於統計推斷、模型選擇和學習技術。該書擴展了在離散貝葉斯網絡研究中使用的既有技術,使其能夠應用於更一般的情境。作為第一本關於鏈事件圖的專著,本書預期將成為在統計學中使用事件樹和有色概率樹的里程碑之作,並促進這類樹模型在描述事件如何展開的假設中的使用。
特色:
- 介紹了一種基於事件樹的新穎且令人興奮的離散圖形模型
- 專注於說明推斷技術,使其方法論對非常廣泛的受眾,尤其是實務工作者,變得可接觸
- 透過廣泛的範例進行說明,涵蓋重要的當前和未來應用
- 包含測試理解的練習題,並且可以輕鬆用作課本
- 介紹相關的軟體套件
Rodrigo A. Collazo 是位於巴西里約熱內盧的海軍系統分析中心 (CASNAV) 的方法論和計算統計學家。Christiane Goergen 是德國萊比錫的馬克斯·普朗克科學研究所的數學統計學家。Jim Q. Smith 是英國華威大學的統計學教授。他在統計學、人工智慧和決策分析領域發表了廣泛的研究,並撰寫了另外兩本書,最近一本是《貝葉斯決策分析:原則與實踐》(劍橋大學出版社 2010)。