Data Mining for Business Analytics: Concepts, Techniques, and Applications in R (Hardcover)
暫譯: 商業分析中的資料探勘:概念、技術與 R 的應用 (精裝版)
Galit Shmueli, Peter C Bruce, Inbal Yahav, Nitin R Patel, Kenneth C Lichtendahl Jr.
- 出版商: Wiley
- 出版日期: 2017-09-05
- 售價: $3,920
- 貴賓價: 9.5 折 $3,724
- 語言: 英文
- 頁數: 574
- 裝訂: Hardcover
- ISBN: 1118879368
- ISBN-13: 9781118879368
-
相關分類:
R 語言、Data-mining
無法訂購
買這商品的人也買了...
-
$1,176Database Management Systems, 3/e (IE-Paperback)
-
$4,240$4,028 -
$1,780$1,744 -
$1,200$1,140 -
$1,410$1,340 -
$235ggplot2:數據分析與圖形藝術
-
$1,440$1,368 -
$2,470$2,347 -
$1,098Introduction to Computation and Programming Using Python: With Application to Understanding Data, 2/e (Paperback)
-
$1,617Deep Learning (Hardcover)
-
$990Microsoft Excel Data Analysis and Business Modeling (5TH ed.)
-
$4,840$4,598 -
$2,030$1,929 -
$990Hands-On Machine Learning with Scikit-Learn and TensorFlow (Paperback)
-
$948Scala for the Impatient,2/e
-
$1,980$1,881 -
$1,880$1,786 -
$1,150$1,093 -
$1,188Deep Reinforcement Learning Hands-On
-
$2,640Natural Language Processing with PyTorch
-
$1,750$1,715 -
$1,850$1,758 -
$1,490$1,416 -
$1,420$1,392 -
$2,230$2,119
相關主題
商品描述
Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration
Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities.
This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes:
• Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government
• Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students
• More than a dozen case studies demonstrating applications for the data mining techniques described
• End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented
• A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions
Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology.
“ This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.”
Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 publications including books.
Peter C. Bruce is President and Founder of the Institute for Statistics Education at Statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective (Wiley) and co-author of Practical Statistics for Data Scientists: 50 Essential Concepts (O’Reilly).
Inbal Yahav, PhD, is Professor at the Graduate School of Business Administration at Bar-Ilan University, Israel. She teaches courses in social network analysis, advanced research methods, and software quality assurance. Dr. Yahav received her PhD in Operations Research and Data Mining from the University of Maryland, College Park.
Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years.
Kenneth C. Lichtendahl, Jr., PhD, is Associate Professor at the University of Virginia. He is the Eleanor F. and Phillip G. Rust Professor of Business Administration and teaches MBA courses in decision analysis, data analysis and optimization, and managerial quantitative analysis. He also teaches executive education courses in strategic analysis and decision-making, and managing the corporate aviation function.
商品描述(中文翻譯)
《商業分析的資料探勘:概念、技術與 R 的應用》提供了一種應用的資料探勘概念和方法,並使用 R 軟體進行說明。
讀者將學習如何在 R(免費且開源的軟體)中實現各種流行的資料探勘演算法,以解決商業問題和機會。
這是這本成功書籍的第五版,也是第一個使用 R 的版本。它涵蓋了預測、分類、視覺化、降維、推薦系統、聚類、文本探勘和網路分析的統計和機器學習演算法。它還包括:
• 兩位新的共同作者,Inbal Yahav 和 Casey Lichtendahl,他們在使用 R 教授商業分析課程方面擁有專業知識,並在商業和政府領域擁有資料探勘諮詢經驗。
• 根據教授 MBA、學士、文憑和高管課程的教師及其學生的反饋進行的更新和新材料。
• 超過十個案例研究,展示所描述的資料探勘技術的應用。
• 章末練習,幫助讀者評估和擴展對所呈現材料的理解和能力。
• 一個伴隨網站,提供超過二十個資料集,以及包括練習解答、PowerPoint 幻燈片和案例解決方案的教學材料。
《商業分析的資料探勘:概念、技術與 R 的應用》是研究生和高年級本科生資料探勘、預測分析和商業分析課程的理想教科書。這一新版也是分析師、研究人員和從事商業、金融、行銷、計算機科學和資訊技術領域的定量方法的實務工作者的優秀參考書。
“這本書是我見過的對商業分析方法最全面的回顧,涵蓋了從經典方法如線性和邏輯回歸,到現代方法如神經網路、袋裝和提升,甚至更多商業特定程序如社交網路分析和文本探勘。如果不是聖經,至少也是這個主題的權威手冊。”
Gareth M. James,南加州大學教授,與 Witten、Hastie 和 Tibshirani 共同著作的暢銷書《統計學習導論:R 的應用》共同作者。
Galit Shmueli 博士是國立清華大學服務科學研究所的特聘教授。自 2004 年以來,她在馬里蘭大學、Statistics.com、印度商學院和國立清華大學教授資料探勘課程。Shmueli 教授以其在商業分析方面的研究和教學而聞名,專注於資訊系統和醫療保健中的統計和資料探勘方法。她已發表超過 70 篇出版物,包括書籍。
Peter C. Bruce 是 Statistics.com 統計教育研究所的總裁和創始人。他撰寫了多篇期刊文章,並開發了 Resampling Stats 軟體。他是《入門統計與分析:重抽樣視角》(Wiley)的作者,也是《資料科學家的實用統計:50 個基本概念》(O'Reilly)的共同作者。
Inbal Yahav 博士是以色列巴伊蘭大學商業管理研究所的教授。她教授社交網路分析、高級研究方法和軟體品質保證課程。Yahav 博士在馬里蘭大學獲得運籌學和資料探勘的博士學位。
Nitin R. Patel 博士是位於麻薩諸塞州劍橋的 Cytel, Inc. 的董事長和共同創辦人。他是美國統計協會的會士,曾擔任麻省理工學院和哈佛大學的客座教授。他是印度計算機學會的會士,並在印度管理學院艾哈邁達巴德任教 15 年。
Kenneth C. Lichtendahl, Jr. 博士是維吉尼亞大學的副教授。他是 Eleanor F. 和 Phillip G. Rust 商業管理教授,教授 MBA 課程,包括決策分析、資料分析和優化,以及管理定量分析。他還教授高管教育課程,內容涵蓋戰略分析和決策制定,以及管理企業航空功能。