Computational Bayesian Statistics: An Introduction
暫譯: 計算貝葉斯統計學:入門指南

Amaral Turkman, M. Antonia, Paulino, Carlos Daniel, Muller, Peter

相關主題

商品描述

Meaningful use of advanced Bayesian methods requires a good understanding of the fundamentals. This engaging book explains the ideas that underpin the construction and analysis of Bayesian models, with particular focus on computational methods and schemes. The unique features of the text are the extensive discussion of available software packages combined with a brief but complete and mathematically rigorous introduction to Bayesian inference. The text introduces Monte Carlo methods, Markov chain Monte Carlo methods, and Bayesian software, with additional material on model validation and comparison, transdimensional MCMC, and conditionally Gaussian models. The inclusion of problems makes the book suitable as a textbook for a first graduate-level course in Bayesian computation with a focus on Monte Carlo methods. The extensive discussion of Bayesian software - R/R-INLA, OpenBUGS, JAGS, STAN, and BayesX - makes it useful also for researchers and graduate students from beyond statistics.

商品描述(中文翻譯)

有意義地使用先進的貝葉斯方法需要對基本原理有良好的理解。本書以引人入勝的方式解釋了構建和分析貝葉斯模型的基本思想,特別關注計算方法和方案。這本書的獨特之處在於對可用軟體包的廣泛討論,結合了簡短但完整且數學上嚴謹的貝葉斯推斷介紹。文本介紹了蒙地卡羅方法(Monte Carlo methods)、馬可夫鏈蒙地卡羅方法(Markov chain Monte Carlo methods)和貝葉斯軟體,並附加了有關模型驗證和比較、跨維度MCMC(transdimensional MCMC)以及條件高斯模型(conditionally Gaussian models)的材料。問題的包含使本書適合作為貝葉斯計算的第一門研究生課程的教科書,重點在於蒙地卡羅方法。對貝葉斯軟體的廣泛討論 - R/R-INLA、OpenBUGS、JAGS、STAN 和 BayesX - 使其對來自統計學以外的研究人員和研究生也非常有用。